@@ -1891,26 +1891,34 @@ \section{Section II: Feature Design}
1891
1891
1892
1892
1893
1893
\begin {frame }[t]{Ex08: Principal Component Analysis (PCA)}
1894
- $ \cdot $ for a $ N \times F$ full-column rank matrix $ \bm {X}$ we ensure that each column is mean-free by
1895
- $$ \bm {X}_{N \times F} \leftarrow \bm {X}_{N \times F} - \frac {1}{N} \bm {1}_{1 \times N} \bm {X}_{N \times F}$$
1896
1894
1897
- $ \cdot $ for a $ F \times N$ full-row rank matrix $ \bm {X}$ we ensure that each row is mean-free by
1898
- $$ \bm {X}_{F \times N} \leftarrow \bm {X}_{F \times N} - \frac {1}{N} \bm {X}_{F \times N} \bm {1}_{N \times 1}$$
1895
+ PCA is typically applied on mean-free data
1899
1896
1897
+ $ \cdot $ for an $ N \times F$ full-column rank matrix $ \bm {X}$ we ensure that each column is mean-free by
1898
+ $$ \bm {X}_{N \times F} \leftarrow \bm {X}_{N \times F} - \frac {1}{N} \bm {1}_{N \times N} \bm {X}_{N \times F}$$
1899
+
1900
+ $ \cdot $ for an $ F \times N$ full-row rank matrix $ \bm {X}$ we ensure that each row is mean-free by
1901
+ $$ \bm {X}_{F \times N} \leftarrow \bm {X}_{F \times N} - \frac {1}{N} \bm {X}_{F \times N} \bm {1}_{N \times N}$$
1902
+
1903
+ PCA is often additionally performed on unit-variance preprocessed data, cf. function zscore()
1904
+
1905
+ this then yields a total variance of $$ \mathrm {trace}(\mathrm {cov}(\mathrm {zscore}(\bm {X})))= F$$
1906
+
1907
+ which the PCA spreads over the principal component (PC) scores
1900
1908
1901
1909
\end {frame }
1902
1910
1903
1911
1904
1912
1905
- \begin {frame }[t]{Ex08: Principal Component Analysis (PCA) with SVD}
1913
+ \begin {frame }[t]{Ex08: Principal Component Analysis (PCA) via SVD}
1906
1914
1907
1915
$ \cdot $ for $ \bm {X}_c \in \mathbb {R}$ , $ \bm {X}_c = \bm {X}_r^\mathrm {T}$ , $ \bm {F}_c = \bm {F}_r^\mathrm {T}$ , SVD matrices $ \bm {U} \bm {\Sigma } \bm {V}^\mathrm {T}$ for $ \bm {X}_c$
1908
1916
1909
- $ \cdot $ PC Scores are ortho\underline {gonal} and variance-sorted, PC Loadings are ortho\underline {normal}
1917
+ $ \cdot $ PC scores are ortho\underline {gonal} and variance-sorted, PC loadings are ortho\underline {normal}
1910
1918
1911
1919
\vspace {0.5em}
1912
1920
\begin {minipage }[t]{0.49\textwidth }
1913
- full column rank, mean-free columns
1921
+ full- column rank, mean-free columns
1914
1922
\begin {center }
1915
1923
$
1916
1924
\def\F {0.5}
@@ -1924,7 +1932,7 @@ \section{Section II: Feature Design}
1924
1932
\end {minipage }
1925
1933
%
1926
1934
\begin {minipage }[t]{0.49\textwidth }
1927
- full row rank, mean-free rows
1935
+ full- row rank, mean-free rows
1928
1936
\begin {center }
1929
1937
$
1930
1938
\def\F {0.5}
@@ -1938,36 +1946,47 @@ \section{Section II: Feature Design}
1938
1946
\end {minipage }
1939
1947
1940
1948
\begin {minipage }[t]{0.49\textwidth }
1941
- $$ \bm {X}_c= \bm {U} \bm {\Sigma } \bm {V}^\mathrm {T} = \bm {F}_c \bm {L}^\mathrm {T}$$
1942
1949
1943
- PC Scores $ \bm {F}_c =
1950
+ Mapping
1951
+
1952
+ $ \bm {X}_c= \bm {U} \bm {\Sigma } \bm {V}^\mathrm {T} = \bm {F}_c \bm {L}^\mathrm {T}$
1953
+
1954
+ $ \bm {F}_c = \bm {X}_c \bm {L} = \bm {X}_c \bm {V} = \bm {U} \bm {\Sigma }$
1955
+
1956
+ PC scores $ \bm {F}_c =
1944
1957
\begin {bmatrix}
1945
- | & | & |\\
1946
- \bm {f}_1 & \bm {f}_ : & \bm {f}_F\\
1947
- | & | & |\\
1958
+ | & | & | & | \\
1959
+ \bm {f}_1 & \bm {f}_ 2 & : & \bm {f}_F\\
1960
+ | & | & | & | \\
1948
1961
\end {bmatrix}
1949
1962
= \bm {U} \bm {\Sigma }$
1950
1963
1951
- PC Loadings $$ \bm {L} = \bm {V}$$
1964
+ PC loadings $ \bm {L} = \bm {V}$
1965
+
1952
1966
1953
- Mapping $ \bm {X}_c \bm {L} = \bm {X}_c \bm {V} = \bm {U} \bm {\Sigma } = \bm {F}_c$
1954
1967
\end {minipage }
1955
1968
%
1956
1969
\begin {minipage }[t]{0.49\textwidth }
1957
- $$ \bm {X}_r = \bm {V} \bm {\Sigma } \bm {U}^\mathrm {T} = \bm {L} \bm {F}_r$$
1958
1970
1959
- PC Scores $ \bm {F}_r =
1971
+ Mapping
1972
+
1973
+ $ \bm {X}_r = \bm {V} \bm {\Sigma } \bm {U}^\mathrm {T} = \bm {L} \bm {F}_r$
1974
+
1975
+ $ \bm {F}_r = \bm {L}^\mathrm {T} \bm {X}_r = \bm {V}^\mathrm {T} \bm {X}_r = \bm {\Sigma } \bm {U}^\mathrm {T}$
1976
+
1977
+ PC scores $ \bm {F}_r =
1960
1978
\begin {bmatrix}
1961
1979
- \bm {f}_1 -\\
1962
- - \bm {f}_: -\\
1980
+ - \bm {f}_2 -\\
1981
+ - : -\\
1963
1982
- \bm {f}_F -
1964
1983
\end {bmatrix}
1965
1984
=
1966
1985
\bm {\Sigma } \bm {U}^\mathrm {T}$
1967
1986
1968
- PC Loadings $$ \bm {L} = \bm {V} $$
1987
+ PC loadings $ \bm {L} = \bm {V} $
1988
+
1969
1989
1970
- Mapping $ \bm {L}^\mathrm {T} \bm {X}_r = \bm {V}^\mathrm {T} \bm {X}_r = \bm {\Sigma } \bm {U}^\mathrm {T} = \bm {F}_r$
1971
1990
1972
1991
\end {minipage }
1973
1992
@@ -1983,11 +2002,11 @@ \section{Section II: Feature Design}
1983
2002
1984
2003
$ \cdot $ for $ \bm {X}_c \in \mathbb {R}$ , $ \bm {X}_c = \bm {X}_r^\mathrm {T}$ , $ \bm {F}_c = \bm {F}_r^\mathrm {T}$ , SVD matrices $ \bm {U} \bm {\Sigma } \bm {V}^\mathrm {T}$ for $ \bm {X}_c$
1985
2004
1986
- $ \cdot $ PC Scores are ortho\underline {gonal} and variance-sorted, PC Loadings are ortho\underline {normal}
2005
+ $ \cdot $ PC scores are ortho\underline {gonal} and variance-sorted, PC loadings are ortho\underline {normal}
1987
2006
1988
2007
\vspace {0.5em}
1989
2008
\begin {minipage }[t]{0.49\textwidth }
1990
- full column rank, mean-free columns
2009
+ full- column rank, mean-free columns
1991
2010
\begin {center }
1992
2011
$
1993
2012
\def\F {0.5}
@@ -2001,7 +2020,7 @@ \section{Section II: Feature Design}
2001
2020
\end {minipage }
2002
2021
%
2003
2022
\begin {minipage }[t]{0.49\textwidth }
2004
- full row rank, mean-free rows
2023
+ full- row rank, mean-free rows
2005
2024
\begin {center }
2006
2025
$
2007
2026
\def\F {0.5}
@@ -2021,9 +2040,9 @@ \section{Section II: Feature Design}
2021
2040
2022
2041
diagonalization (with SVD) $ \bm {C}_X = \bm {V} \bm {\Lambda } \bm {V}^\mathrm {T}$
2023
2042
2024
- PC Scores $ \bm {F}_c = \bm {X}_c \bm {V}$
2043
+ PC scores $ \bm {F}_c = \bm {X}_c \bm {V}$
2025
2044
2026
- PC Loadings $ \bm {L} = \bm {V}$
2045
+ PC loadings $ \bm {L} = \bm {V}$
2027
2046
2028
2047
\end {minipage }
2029
2048
%
@@ -2032,26 +2051,219 @@ \section{Section II: Feature Design}
2032
2051
2033
2052
diagonalization (with SVD) $ \bm {C}_X = \bm {V} \bm {\Lambda } \bm {V}^\mathrm {T}$
2034
2053
2035
- PC Scores $ \bm {F}_r = \bm {V}^\mathrm {T} \bm {X}_r$
2054
+ PC scores $ \bm {F}_r = \bm {V}^\mathrm {T} \bm {X}_r$
2036
2055
2037
- PC Loadings $ \bm {L} = \bm {V}$
2056
+ PC loadings $ \bm {L} = \bm {V}$
2038
2057
2039
2058
\end {minipage }
2040
2059
2041
2060
\vspace {0.5em}
2042
2061
2043
2062
% \small
2044
- $ \cdot $ SVD-based diagonalization inherently sorts the eigenvalues in $ \bm {\Lambda }$ , making the PC Scores \underline {variance-sorted} (covariance matrix of $ \bm {F}$ is a sorted diagonal matrix)
2063
+ $ \cdot $ an SVD-based diagonalization inherently sorts the eigenvalues in $ \bm {\Lambda }$ , making the orthogonal PC scores \underline {variance-sorted} (i.e. covariance matrix of $ \bm {F}$ is a sorted diagonal matrix)
2064
+
2065
+ $ \cdot $ $ \bm {V} / \bm {F}$ might exhibit reflections compared to $ \bm {V} / \bm {F}$ from SVD-based approach
2066
+
2067
+ $ \cdot $ SVD / covariance approaches are consistent by itself as calculation of $ \bm {F}$ and $ \bm {L}$ is linked
2068
+
2069
+ \end {frame }
2070
+
2071
+
2072
+
2073
+ \begin {frame }[t]{Ex08: Principal Component Analysis (PCA) Feature Representation}
2074
+
2075
+ $ \cdot $ for $ \bm {X}_c \in \mathbb {R}$ , $ \bm {X}_c = \bm {X}_r^\mathrm {T}$ , $ \bm {F}_c = \bm {F}_r^\mathrm {T}$ , SVD matrices $ \bm {U} \bm {\Sigma } \bm {V}^\mathrm {T}$ for $ \bm {X}_c$
2076
+
2077
+ \begin {minipage }[t]{0.49\textwidth }
2078
+ full-column rank, mean-free columns
2079
+
2080
+ $ \bm {X}_{c,N \times F}$
2081
+
2082
+ PC scores $ \bm {F}_c = \bm {X}_c \bm {V}$
2083
+
2084
+ PC loadings $ \bm {L} = \bm {V}$
2085
+
2086
+ \end {minipage }
2087
+ %
2088
+ \begin {minipage }[t]{0.49\textwidth }
2089
+ full-row rank, mean-free rows
2090
+
2091
+ $ \bm {X}_{r,F \times N}$
2092
+
2093
+ PC scores $ \bm {F}_r = \bm {V}^\mathrm {T} \bm {X}_r$
2094
+
2095
+ PC loadings $ \bm {L} = \bm {V}$
2096
+
2097
+ \end {minipage }
2098
+
2099
+ \vspace {1em}
2100
+
2101
+ Reduced PC loading matrix
2102
+ $ \bm {V}_K =
2103
+ \begin {bmatrix}
2104
+ | & | & |\\
2105
+ \bm {v}_1 & : & \bm {v}_{K \leq F}\\
2106
+ | & | & |\\
2107
+ \end {bmatrix}
2108
+ $
2109
+ allows for the following techniques
2110
+
2111
+ \vspace {1em}
2112
+
2113
+ $ \cdot $ Low-Rank Approximation / Truncated SVD (yields a matrix with lower rank $ K$ )
2114
+
2115
+ \begin {minipage }[t]{0.49\textwidth }
2116
+
2117
+ $ \tilde {\bm {X}}_{c,N \times F} = (\bm {X}_c \bm {V}_K) \bm {V}_K^\mathrm {T} = \sum _{i=1}^{K} \sigma _i \bm {u}_i \bm {v}_i^\mathrm {T}$
2118
+
2119
+ \end {minipage }
2120
+ %
2121
+ \begin {minipage }[t]{0.49\textwidth }
2122
+
2123
+ $ \tilde {\bm {X}}_{r,F \times N} = \bm {V}_K (\bm {V}_K^\mathrm {T} \bm {X}_r) = \sum _{i=1}^{K} \sigma _i \bm {v}_i \bm {u}_i^\mathrm {T}$
2124
+
2125
+ \end {minipage }
2126
+
2127
+ \vspace {1em}
2128
+
2129
+ $ \cdot $ Linear Dimensionality Reduction (yields a matrix with smaller dimension $ K$ )
2130
+
2131
+ \begin {minipage }[t]{0.49\textwidth }
2132
+ $ \tilde {\bm {X}}_{c,N \times K} = \bm {X}_c \bm {V}_K =
2133
+ \begin {bmatrix}
2134
+ | & | & |\\
2135
+ \bm {f}_1 & : & \bm {f}_{K}\\
2136
+ | & | & |\\
2137
+ \end {bmatrix}
2138
+ $
2139
+
2140
+ i.e. take only first $ K$ columns of $ \bm {F}_c$
2141
+ \end {minipage }
2142
+ %
2143
+ \begin {minipage }[t]{0.49\textwidth }
2144
+ $ \tilde {\bm {X}}_{r,K \times N} = \bm {V}_K^\mathrm {T} \bm {X}_r
2145
+ =
2146
+ \begin {bmatrix}
2147
+ - \bm {f}_1 -\\
2148
+ - : -\\
2149
+ - \bm {f}_K -
2150
+ \end {bmatrix}
2151
+ $
2152
+
2153
+ i.e. take only first $ K$ rows of $ \bm {F}_r$
2154
+ \end {minipage }
2155
+
2156
+ \end {frame }
2157
+
2158
+
2045
2159
2046
- $ \cdot $ vectors in $ \bm {V}$ might exhibit reflections compared to $ \bm {V}$ from SVD-based approach
2047
2160
2048
- $ \cdot $ SVD / covariance approaches are consistent by itself as calculation of $ \bm {F}$ and $ \bm {L}$ are linked
2049
2161
2162
+
2163
+ \begin {frame }[t]{Ex08: Principal Component Analysis (PCA) 2D-Data Example}
2164
+ \begin {minipage }[t]{0.49\textwidth }
2165
+ \includegraphics [width=\textwidth ]{pca_2d_original_data.pdf}
2166
+ \end {minipage }
2167
+ %
2168
+ \begin {minipage }[t]{0.49\textwidth }
2169
+ \includegraphics [width=\textwidth ]{pca_2d_original_data_with_pcdir.pdf}
2170
+ \end {minipage }
2171
+ \end {frame }
2172
+ % %
2173
+ \begin {frame }[t]{Ex08: Principal Component Analysis (PCA) 2D-Data Example}
2174
+ \begin {minipage }[t]{0.49\textwidth }
2175
+ \includegraphics [width=\textwidth ]{pca_2d_pc_data.pdf}
2176
+ \end {minipage }
2177
+ %
2178
+ \begin {minipage }[t]{0.49\textwidth }
2179
+ \includegraphics [width=\textwidth ]{pca_2d_original_data_with_pcdir.pdf}
2180
+ \end {minipage }
2181
+ \end {frame }
2182
+ % %
2183
+ \begin {frame }[t]{Ex08: Principal Component Analysis (PCA) 2D-Data Example}
2184
+ \begin {minipage }[t]{0.49\textwidth }
2185
+ \includegraphics [width=\textwidth ]{pca_2d_truncated_svd.pdf}
2186
+ \end {minipage }
2187
+ %
2188
+ \begin {minipage }[t]{0.49\textwidth }
2189
+ \includegraphics [width=\textwidth ]{pca_2d_original_data_with_pcdir.pdf}
2190
+ \end {minipage }
2050
2191
\end {frame }
2192
+ % %
2193
+ \begin {frame }[t]{Ex08: Principal Component Analysis (PCA) 2D-Data Example}
2194
+ \begin {minipage }[t]{0.49\textwidth }
2195
+ \includegraphics [width=\textwidth ]{pca_2d_pc_data.pdf}
2196
+ \end {minipage }
2197
+ %
2198
+ \begin {minipage }[t]{0.49\textwidth }
2199
+ \includegraphics [width=\textwidth ]{pca_2d_dim_red.pdf}
2200
+ \end {minipage }
2201
+ \end {frame }
2202
+
2203
+
2204
+
2051
2205
2052
2206
2053
2207
2054
2208
2209
+ \begin {frame }[t]{Ex08: Principal Component Analysis (PCA) 3D-Data Example}
2210
+ \begin {minipage }[t]{0.49\textwidth }
2211
+ original data cloud in 3D space
2212
+
2213
+ \includegraphics [width=\textwidth ]{pca_3d_original_data.pdf}
2214
+ \end {minipage }
2215
+ %
2216
+ \begin {minipage }[t]{0.49\textwidth }
2217
+ original data cloud in 3D space
2218
+
2219
+ \includegraphics [width=\textwidth ]{pca_3d_original_data_with_pcdir.pdf}
2220
+ \end {minipage }
2221
+ \end {frame }
2222
+ % %
2223
+ \begin {frame }[t]{Ex08: Principal Component Analysis (PCA) 3D-Data Example}
2224
+ \begin {minipage }[t]{0.49\textwidth }
2225
+ PC data cloud in 3D space
2226
+
2227
+ \includegraphics [width=\textwidth ]{pca_3d_pc_data.pdf}
2228
+ \end {minipage }
2229
+ %
2230
+ \begin {minipage }[t]{0.49\textwidth }
2231
+ original data cloud in 3D space
2232
+
2233
+ \includegraphics [width=\textwidth ]{pca_3d_original_data_with_pcdir.pdf}
2234
+ \end {minipage }
2235
+ \end {frame }
2236
+ % %
2237
+ \begin {frame }[t]{Ex08: Principal Component Analysis (PCA) 3D-Data Example}
2238
+ \begin {minipage }[t]{0.49\textwidth }
2239
+ data \underline {plane} in 3D space
2240
+
2241
+ \includegraphics [width=\textwidth ]{pca_3d_truncated_svd.pdf}
2242
+ \end {minipage }
2243
+ %
2244
+ \begin {minipage }[t]{0.49\textwidth }
2245
+ data cloud in 3D space
2246
+
2247
+ \includegraphics [width=\textwidth ]{pca_3d_original_data_with_pcdir.pdf}
2248
+ \end {minipage }
2249
+ \end {frame }
2250
+ % %
2251
+ \begin {frame }[t]{Ex08: Principal Component Analysis (PCA) 3D-Data Example}
2252
+ \begin {minipage }[t]{0.49\textwidth }
2253
+ data cloud in 3D space
2254
+
2255
+ \includegraphics [width=\textwidth ]{pca_3d_pc_data.pdf}
2256
+ \end {minipage }
2257
+ %
2258
+ \begin {minipage }[t]{0.49\textwidth }
2259
+ data \underline {plane} in 2D space (PC3 not used)
2260
+
2261
+ \includegraphics [width=\textwidth ]{pca_3d_dim_red.pdf}
2262
+ \end {minipage }
2263
+ \end {frame }
2264
+
2265
+
2266
+
2055
2267
2056
2268
2057
2269
0 commit comments