@@ -239,7 +239,7 @@ def circular_pw(N, k, r, setup):
239239
240240 .. math::
241241
242- \mathring{P}_n(k) = i^{-n} b_n(kr)
242+ \mathring{P}_n(k) = i^n b_n(kr)
243243
244244 Parameters
245245 ----------
@@ -254,14 +254,14 @@ def circular_pw(N, k, r, setup):
254254
255255 Returns
256256 -------
257- bn : (M, N+1) numpy.ndarray
257+ bn : (M, 2* N+1) numpy.ndarray
258258 Radial weights for all orders up to N and the given wavenumbers.
259259 """
260260 kr = util .asarray_1d (k * r )
261261 n = np .roll (np .arange (- N , N + 1 ), - N )
262262
263263 bn = circ_radial_weights (N , kr , setup )
264- return ( 1j ) ** ( n ) * bn
264+ return 1j ** n * bn
265265
266266
267267def circular_ls (N , k , r , rs , setup ):
@@ -289,7 +289,7 @@ def circular_ls(N, k, r, rs, setup):
289289
290290 Returns
291291 -------
292- bn : (M, N+1) numpy.ndarray
292+ bn : (M, 2* N+1) numpy.ndarray
293293 Radial weights for all orders up to N and the given wavenumbers.
294294 """
295295 k = util .asarray_1d (k )
@@ -301,8 +301,8 @@ def circular_ls(N, k, r, rs, setup):
301301 bn = bn [np .newaxis , :]
302302 for i , x in enumerate (krs ):
303303 Hn = special .hankel2 (n , x )
304- bn [i , :] = bn [i , :] * - 1j / 4 * Hn
305- return np .squeeze (bn )
304+ bn [i , :] = bn [i , :] * Hn
305+ return - 1j / 4 * np .squeeze (bn )
306306
307307
308308def circ_radial_weights (N , kr , setup ):
@@ -327,7 +327,7 @@ def circ_radial_weights(N, kr, setup):
327327
328328 Returns
329329 -------
330- bn : (M, N+1) numpy.ndarray
330+ bn : (M, 2* N+1) numpy.ndarray
331331 Radial weights for all orders up to N and the given wavenumbers.
332332
333333 """
@@ -374,27 +374,3 @@ def circ_diagonal_mode_mat(bk):
374374 for k in range (K ):
375375 Bk [k , :, :] = np .diag (bk [k , :])
376376 return np .squeeze (Bk )
377-
378-
379- def mirror_vec (v ):
380- """Mirror elements in a vector.
381-
382- Returns a vector of length *2*len(v)-1* with symmetric elements.
383- The first *len(v)* elements are the same as *v* and the last *len(v)-1*
384- elements are *v[:0:-1]*. The function can be used to order the circular
385- harmonic coefficients. If *v* is a matrix, it is treated as a stack of
386- vectors residing in the last index and broadcast accordingly.
387-
388- Parameters
389- ----------
390- v : (, N+1) numpy.ndarray
391- Input vector of stack of input vectors
392-
393- Returns
394- -------
395- : (, 2*N+1) numpy.ndarray
396- Vector of stack of vectors containing mirrored elements
397- """
398- if len (v .shape ) == 1 :
399- v = v [np .newaxis , :]
400- return np .concatenate ((v , v [:, :0 :- 1 ]), axis = 1 )
0 commit comments