forked from RedHenLab/Neural-Machine-Translation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
268 lines (228 loc) · 10.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import argparse
import os
import numpy as np
import random
import time
import torch
import torch.nn as nn
from torch import cuda
from torch.autograd import Variable
import lib
parser = argparse.ArgumentParser(description="train.py")
## Data options
parser.add_argument("-data", required=True,
help="Path to the *-train.pt file from preprocess.py")
parser.add_argument("-save_dir", required=True,
help="Directory to save models")
parser.add_argument("-load_from", help="Path to load a pretrained model.")
## Model options
parser.add_argument("-layers", type=int, default=1,
help="Number of layers in the LSTM encoder/decoder")
parser.add_argument("-rnn_size", type=int, default=500,
help="Size of LSTM hidden states")
parser.add_argument("-word_vec_size", type=int, default=500,
help="Size of word embeddings")
parser.add_argument("-input_feed", type=int, default=1,
help="""Feed the context vector at each time step as
additional input (via concatenation with the word
embeddings) to the decoder.""")
parser.add_argument("-brnn", action="store_true",
help="Use a bidirectional encoder")
parser.add_argument("-brnn_merge", default="concat",
help="""Merge action for the bidirectional hidden states:
[concat|sum]""")
## Optimization options
parser.add_argument("-batch_size", type=int, default=64,
help="Maximum batch size")
parser.add_argument("-max_generator_batches", type=int, default=32,
help="""Split softmax input into small batches for memory efficiency.
Higher is faster, but uses more memory.""")
parser.add_argument("-end_epoch", type=int, default=50,
help="Epoch to stop training.")
parser.add_argument("-start_epoch", type=int, default=1,
help="Epoch to start training.")
parser.add_argument("-param_init", type=float, default=0.1,
help="""Parameters are initialized over uniform distribution
with support (-param_init, param_init)""")
parser.add_argument("-optim", default="adam",
help="Optimization method. [sgd|adagrad|adadelta|adam]")
parser.add_argument("-lr", type=float, default=1e-3,
help="Initial learning rate")
parser.add_argument("-max_grad_norm", type=float, default=5,
help="""If the norm of the gradient vector exceeds this,
renormalize it to have the norm equal to max_grad_norm""")
parser.add_argument("-dropout", type=float, default=0,
help="Dropout probability; applied between LSTM stacks.")
parser.add_argument("-learning_rate_decay", type=float, default=0.5,
help="""Decay learning rate by this much if (i) perplexity
does not decrease on the validation set or (ii) epoch has
gone past the start_decay_at_limit""")
parser.add_argument("-start_decay_at", type=int, default=5,
help="Start decay after this epoch")
# GPU
parser.add_argument("-gpus", default=[0], nargs="+", type=int,
help="Use CUDA")
parser.add_argument("-log_interval", type=int, default=100,
help="Print stats at this interval.")
parser.add_argument("-seed", type=int, default=3435,
help="Seed for random initialization")
# Critic
parser.add_argument("-start_reinforce", type=int, default=None,
help="""Epoch to start reinforcement training.
Use -1 to start immediately.""")
parser.add_argument("-critic_pretrain_epochs", type=int, default=0,
help="Number of epochs to pretrain critic (actor fixed).")
parser.add_argument("-reinforce_lr", type=float, default=1e-4,
help="""Learning rate for reinforcement training.""")
# Evaluation
parser.add_argument("-eval", action="store_true", help="Evaluate model only")
parser.add_argument("-eval_sample", action="store_true", default=False,
help="Eval by sampling")
parser.add_argument("-max_predict_length", type=int, default=80,
help="Maximum length of predictions.")
# Reward shaping
parser.add_argument("-pert_func", type=str, default=None,
help="Reward-shaping function.")
parser.add_argument("-pert_param", type=float, default=None,
help="Reward-shaping parameter.")
# Others
parser.add_argument("-no_update", action="store_true", default=False,
help="No update round. Use to evaluate model samples.")
parser.add_argument("-sup_train_on_bandit", action="store_true", default=False,
help="Supervised learning update round.")
opt = parser.parse_args()
print(opt)
# Set seed
torch.manual_seed(opt.seed)
np.random.seed(opt.seed)
random.seed(opt.seed)
opt.cuda = len(opt.gpus)
if opt.save_dir and not os.path.exists(opt.save_dir):
os.makedirs(opt.save_dir)
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with -gpus 1")
if opt.cuda:
cuda.set_device(opt.gpus[0])
torch.cuda.manual_seed(opt.seed)
def init(model):
for p in model.parameters():
p.data.uniform_(-opt.param_init, opt.param_init)
def create_optim(model):
optim = lib.Optim(
model.parameters(), opt.optim, opt.lr, opt.max_grad_norm,
lr_decay=opt.learning_rate_decay, start_decay_at=opt.start_decay_at
)
return optim
def create_model(model_class, dicts, gen_out_size):
encoder = lib.Encoder(opt, dicts["src"])
decoder = lib.Decoder(opt, dicts["tgt"])
# Use memory efficient generator when output size is large and
# max_generator_batches is smaller than batch_size.
if opt.max_generator_batches < opt.batch_size and gen_out_size > 1:
generator = lib.MemEfficientGenerator(nn.Linear(opt.rnn_size, gen_out_size), opt)
else:
generator = lib.BaseGenerator(nn.Linear(opt.rnn_size, gen_out_size), opt)
model = model_class(encoder, decoder, generator, opt)
init(model)
optim = create_optim(model)
return model, optim
def create_critic(checkpoint, dicts, opt):
if opt.load_from is not None and "critic" in checkpoint:
critic = checkpoint["critic"]
critic_optim = checkpoint["critic_optim"]
else:
critic, critic_optim = create_model(lib.NMTModel, dicts, 1)
if opt.cuda:
critic.cuda(opt.gpus[0])
return critic, critic_optim
def main():
print('Loading data from "%s"' % opt.data)
dataset = torch.load(opt.data)
supervised_data = lib.Dataset(dataset["train_xe"], opt.batch_size, opt.cuda, eval=False)
bandit_data = lib.Dataset(dataset["train_pg"], opt.batch_size, opt.cuda, eval=False)
valid_data = lib.Dataset(dataset["valid"], opt.batch_size, opt.cuda, eval=True)
test_data = lib.Dataset(dataset["test"], opt.batch_size, opt.cuda, eval=True)
dicts = dataset["dicts"]
print(" * vocabulary size. source = %d; target = %d" %
(dicts["src"].size(), dicts["tgt"].size()))
print(" * number of XENT training sentences. %d" %
len(dataset["train_xe"]["src"]))
print(" * number of PG training sentences. %d" %
len(dataset["train_pg"]["src"]))
print(" * maximum batch size. %d" % opt.batch_size)
print("Building model...")
use_critic = opt.start_reinforce is not None
if opt.load_from is None:
model, optim = create_model(lib.NMTModel, dicts, dicts["tgt"].size())
checkpoint = None
else:
print("Loading from checkpoint at %s" % opt.load_from)
checkpoint = torch.load(opt.load_from)
model = checkpoint["model"]
optim = checkpoint["optim"]
opt.start_epoch = checkpoint["epoch"] + 1
# GPU.
if opt.cuda:
model.cuda(opt.gpus[0])
# Start reinforce training immediately.
if opt.start_reinforce == -1:
opt.start_decay_at = opt.start_epoch
opt.start_reinforce = opt.start_epoch
# Check if end_epoch is large enough.
if use_critic:
assert opt.start_epoch + opt.critic_pretrain_epochs - 1 <= \
opt.end_epoch, "Please increase -end_epoch to perform pretraining!"
nParams = sum([p.nelement() for p in model.parameters()])
print("* number of parameters: %d" % nParams)
# Metrics.
metrics = {}
metrics["nmt_loss"] = lib.Loss.weighted_xent_loss
metrics["critic_loss"] = lib.Loss.weighted_mse
metrics["sent_reward"] = lib.Reward.sentence_bleu
metrics["corp_reward"] = lib.Reward.corpus_bleu
if opt.pert_func is not None:
opt.pert_func = lib.PertFunction(opt.pert_func, opt.pert_param)
# Evaluate model on heldout dataset.
if opt.eval:
evaluator = lib.Evaluator(model, metrics, dicts, opt)
# On validation set.
pred_file = opt.load_from.replace(".pt", ".valid.pred")
evaluator.eval(valid_data, pred_file)
# On test set.
pred_file = opt.load_from.replace(".pt", ".test.pred")
evaluator.eval(test_data, pred_file)
elif opt.eval_sample:
opt.no_update = True
critic, critic_optim = create_critic(checkpoint, dicts, opt)
reinforce_trainer = lib.ReinforceTrainer(model, critic, bandit_data, test_data,
metrics, dicts, optim, critic_optim, opt)
reinforce_trainer.train(opt.start_epoch, opt.start_epoch, False)
elif opt.sup_train_on_bandit:
optim.set_lr(opt.reinforce_lr)
xent_trainer = lib.Trainer(model, bandit_data, test_data, metrics, dicts, optim, opt)
xent_trainer.train(opt.start_epoch, opt.start_epoch)
else:
print("theek hai")
xent_trainer = lib.Trainer(model, supervised_data, valid_data, metrics, dicts, optim, opt)
if use_critic:
start_time = time.time()
# Supervised training.
xent_trainer.train(opt.start_epoch, opt.start_reinforce - 1, start_time)
# Create critic here to not affect random seed.
critic, critic_optim = create_critic(checkpoint, dicts, opt)
# Pretrain critic.
if opt.critic_pretrain_epochs > 0:
reinforce_trainer = lib.ReinforceTrainer(model, critic, supervised_data, test_data,
metrics, dicts, optim, critic_optim, opt)
reinforce_trainer.train(opt.start_reinforce,
opt.start_reinforce + opt.critic_pretrain_epochs - 1, True, start_time)
# Reinforce training.
reinforce_trainer = lib.ReinforceTrainer(model, critic, bandit_data, test_data,
metrics, dicts, optim, critic_optim, opt)
reinforce_trainer.train(opt.start_reinforce + opt.critic_pretrain_epochs, opt.end_epoch,
False, start_time)
# Supervised training only.
else:
xent_trainer.train(opt.start_epoch, opt.end_epoch)
if __name__ == "__main__":
main()