-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathblur.py
78 lines (62 loc) · 2.84 KB
/
blur.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""
Bluring Features that allows the user to blur the images with customizable
"""
# This import solves the import issues.
import cv2 as cv
import numpy
import sys
#read in the image data.
img = cv.imread(cv.samples.findFile("./img/kawai.jpg"), cv.IMREAD_UNCHANGED)
if img is None:
sys.exit("Image not exist")
"""blurring whole image, controlable variables: deg
"""
#save image to rewritable array
img_np = numpy.array(img)
#create np array to store the 3d array of whole blurred image
blur_whole = img_np.copy()
#set the blurring degree, bigger number equals more blur, deg>=1
deg = 1
#loop through the numpy 3d array
for degree in range(0, deg):
for x in range(0, len(img_np)-1): #x-axis of pixel
for y in range(0, len(img_np[0])-1): #y-axis of pixel
if (x<(len(img_np)-4) and y<(len(img_np[x])-4)):
for z in range(0,2):
#average the upper, left, bottom, right pixels of original image and save to blur numpy array
blur_whole[x][y][z]=(int(img_np[x-3][y-3][z])+int(img_np[x+3][y+3][z])+int(img_np[x+3][y-3][z])+int(img_np[x-3][y+3][z]))/4
img_np = blur_whole.copy()
"""blurring partial image, controlable variables: part_x, part_y, area, lvl
"""
#create np array to store the 3d array of partial blurred image
img_np = numpy.array(img)
blur_part = img_np.copy()
p_x = 10 #x coordinate of the center of part blurring, 0:100 from left to right
p_y = 10 #y coordinate of the center of part blurring, 0:100 from top to down
area = 50 #percentage of area size to blur, 1:100
lvl = 1 #higher indicated more blurred, lvl>1 (less than 10 recommended)
#center of part blurring in pixels
c_x = len(img_np)*p_x/100
c_y = len(img_np[0])*p_x/100
#radius to blur in pixels
c_area = min(len(img_np), len(img_np[0]))*area/100/2
#loop through the numpy 3d array
for level in range(0, 1):
for x in range(0, len(img_np)-1): #x-axis of pixel
for y in range(0, len(img_np[0])-1): #y-axis of pixel
if (x<(len(img_np)-4) and y<(len(img_np[x])-4)) and (x-c_x)**2 + (y-c_y)**2 < c_area**2: #change every pixel in range selected
for z in range(0,2):
#average the upper, left, bottom, right pixels of original image and save to partial blur numpy array
blur_part[x][y][z]=(int(img_np[x-3][y-3][z])+int(img_np[x+3][y+3][z])+int(img_np[x+3][y-3][z])+int(img_np[x-3][y+3][z]))/4
img_np = blur_part.copy()
#set the window size to be controllable and fixed porpotion.
cv.namedWindow('My Image', cv.WINDOW_NORMAL)
#display blurred image
cv.imshow('My Image', blur_part)
cv.imshow('My Image', blur_whole)
#wait for keystroke in the window, then destroy
cv.waitKey(0)
cv.destroyAllWindows()
#write blurred images to output image file
cv.imwrite("imgs/blur_whole.png", blur_whole)
cv.imwrite("imgs/blur_part.png", blur_part)