This repository was archived by the owner on Aug 18, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathgenerate.py
52 lines (42 loc) · 1.88 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# https://github.com/spro/practical-pytorch
# -*- coding: utf-8 -*-
import torch
from helpers import *
from model import *
def generate(decoder, all_characters, prime_str='A', predict_len=100, temperature=0.8):
hidden = decoder.init_hidden()
prime_input = char_tensor(prime_str, all_characters)
predicted = prime_str
# Use priming string to "build up" hidden state
for p in range(len(prime_str) - 1):
_, hidden = decoder(prime_input[p], hidden)
inp = prime_input[-1]
for p in range(predict_len):
output, hidden = decoder(inp, hidden)
# Sample from the network as a multinomial distribution
output_dist = output.data.view(-1).div(temperature).exp()
top_i = torch.multinomial(output_dist, 1)[0]
# Add predicted character to string and use as next input
predicted_char = all_characters[top_i]
predicted += predicted_char
inp = char_tensor(predicted_char, all_characters)
return predicted
if __name__ == '__main__':
# Parse command line arguments
import argparse, pickle
argparser = argparse.ArgumentParser()
argparser.add_argument('filename', type=str)
argparser.add_argument('-p', '--prime_str', type=str, default='A')
argparser.add_argument('-l', '--predict_len', type=int, default=100)
argparser.add_argument('-t', '--temperature', type=float, default=0.8)
argparser.add_argument('-f', '--charset-file', type=str, default='charset.pickle')
args = argparser.parse_args()
print args
with open(args.charset_file) as fd:
all_characters = pickle.load(fd)
decoder = torch.load(args.filename)
del args.filename
del args.charset_file
print all_characters
#print(generate(decoder=decoder, all_characters=all_characters, **vars(args)))
print generate(decoder, all_characters=all_characters, prime_str='अध्याय', predict_len=500)