|
| 1 | +import torch |
| 2 | +from torch.nn import functional |
| 3 | +from torch.autograd import Variable |
| 4 | + |
| 5 | +def sequence_mask(sequence_length, max_len=None): |
| 6 | + if max_len is None: |
| 7 | + max_len = sequence_length.data.max() |
| 8 | + batch_size = sequence_length.size(0) |
| 9 | + seq_range = torch.range(0, max_len - 1).long() |
| 10 | + seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) |
| 11 | + seq_range_expand = Variable(seq_range_expand) |
| 12 | + if sequence_length.is_cuda: |
| 13 | + seq_range_expand = seq_range_expand.cuda() |
| 14 | + seq_length_expand = (sequence_length.unsqueeze(1) |
| 15 | + .expand_as(seq_range_expand)) |
| 16 | + return seq_range_expand < seq_length_expand |
| 17 | + |
| 18 | + |
| 19 | +def masked_cross_entropy(logits, target, length): |
| 20 | + length = Variable(torch.LongTensor(length)).cuda() |
| 21 | + |
| 22 | + """ |
| 23 | + Args: |
| 24 | + logits: A Variable containing a FloatTensor of size |
| 25 | + (batch, max_len, num_classes) which contains the |
| 26 | + unnormalized probability for each class. |
| 27 | + target: A Variable containing a LongTensor of size |
| 28 | + (batch, max_len) which contains the index of the true |
| 29 | + class for each corresponding step. |
| 30 | + length: A Variable containing a LongTensor of size (batch,) |
| 31 | + which contains the length of each data in a batch. |
| 32 | +
|
| 33 | + Returns: |
| 34 | + loss: An average loss value masked by the length. |
| 35 | + """ |
| 36 | + |
| 37 | + # logits_flat: (batch * max_len, num_classes) |
| 38 | + logits_flat = logits.view(-1, logits.size(-1)) |
| 39 | + # log_probs_flat: (batch * max_len, num_classes) |
| 40 | + log_probs_flat = functional.log_softmax(logits_flat) |
| 41 | + # target_flat: (batch * max_len, 1) |
| 42 | + target_flat = target.view(-1, 1) |
| 43 | + # losses_flat: (batch * max_len, 1) |
| 44 | + losses_flat = -torch.gather(log_probs_flat, dim=1, index=target_flat) |
| 45 | + # losses: (batch, max_len) |
| 46 | + losses = losses_flat.view(*target.size()) |
| 47 | + # mask: (batch, max_len) |
| 48 | + mask = sequence_mask(sequence_length=length, max_len=target.size(1)) |
| 49 | + losses = losses * mask.float() |
| 50 | + loss = losses.sum() / length.float().sum() |
| 51 | + return loss |
0 commit comments