@@ -61,8 +61,8 @@ func generateFeatureColumnCode(fc ir.FeatureColumn) (string, error) {
6161 case * ir.NumericColumn :
6262 nc := fc .(* ir.NumericColumn )
6363 return fmt .Sprintf ("tf.feature_column.numeric_column(\" %s\" , shape=%s)" ,
64- nc .FieldMeta .Name ,
65- intArrayToJSONString (nc .FieldMeta .Shape )), nil
64+ nc .FieldDesc .Name ,
65+ intArrayToJSONString (nc .FieldDesc .Shape )), nil
6666 case * ir.BucketColumn :
6767 bc := fc .(* ir.BucketColumn )
6868 sourceCode , err := generateFeatureColumnCode (bc .SourceColumn )
@@ -76,11 +76,11 @@ func generateFeatureColumnCode(fc ir.FeatureColumn) (string, error) {
7676 case * ir.CategoryIDColumn :
7777 cc := fc .(* ir.CategoryIDColumn )
7878 return fmt .Sprintf ("tf.feature_column.categorical_column_with_identity(key=\" %s\" , num_buckets=%d)" ,
79- cc .FieldMeta .Name , cc .BucketSize ), nil
79+ cc .FieldDesc .Name , cc .BucketSize ), nil
8080 case * ir.SeqCategoryIDColumn :
8181 cc := fc .(* ir.SeqCategoryIDColumn )
8282 return fmt .Sprintf ("tf.feature_column.sequence_categorical_column_with_identity(key=\" %s\" , num_buckets=%d)" ,
83- cc .FieldMeta .Name , cc .BucketSize ), nil
83+ cc .FieldDesc .Name , cc .BucketSize ), nil
8484 case * ir.CrossColumn :
8585 cc := fc .(* ir.CrossColumn )
8686 var keysGenerated = make ([]string , len (cc .Keys ))
@@ -226,26 +226,25 @@ func setValidateParamDefaultValues(validateParams map[string]interface{}) {
226226 }
227227}
228228
229- func deriveFeatureColumnCode (trainStmt * ir.TrainStmt ) (featureColumnsCode []string , fieldMetas []* ir.FieldMeta , err error ) {
229+ func deriveFeatureColumnCode (trainStmt * ir.TrainStmt ) (featureColumnsCode []string , fieldDescs []* ir.FieldDesc , err error ) {
230230 perTargetFeatureColumnsCode := []string {}
231-
232231 for target , fcList := range trainStmt .Features {
233232 for _ , fc := range fcList {
234233 fcCode , err := generateFeatureColumnCode (fc )
235234 if err != nil {
236235 return nil , nil , err
237236 }
238237 perTargetFeatureColumnsCode = append (perTargetFeatureColumnsCode , fcCode )
239- if len (fc .GetFieldMeta ()) > 0 {
240- for _ , fm := range fc .GetFieldMeta () {
241- fieldMetas = append (fieldMetas , fm )
238+ if len (fc .GetFieldDesc ()) > 0 {
239+ for _ , fm := range fc .GetFieldDesc () {
240+ fieldDescs = append (fieldDescs , fm )
242241 }
243242 }
244243 }
245244 featureColumnsCode = append (featureColumnsCode ,
246245 fmt .Sprintf ("\" %s\" : [%s]" , target , strings .Join (perTargetFeatureColumnsCode , ",\n " )))
247246 }
248- return featureColumnsCode , fieldMetas , nil
247+ return featureColumnsCode , fieldDescs , nil
249248}
250249
251250// Train generates a Python program for train a TensorFlow model.
@@ -259,7 +258,7 @@ func Train(trainStmt *ir.TrainStmt) (string, error) {
259258 setTrainParamDefaultValues (trainParams )
260259 setValidateParamDefaultValues (validateParams )
261260
262- featureColumnsCode , fieldMetas , err := deriveFeatureColumnCode (trainStmt )
261+ featureColumnsCode , fieldDescs , err := deriveFeatureColumnCode (trainStmt )
263262 if err != nil {
264263 return "" , err
265264 }
@@ -286,9 +285,9 @@ func Train(trainStmt *ir.TrainStmt) (string, error) {
286285 ValidationSelect : trainStmt .ValidationSelect ,
287286 Estimator : estimatorStr ,
288287 IsKerasModel : isKeras ,
289- FieldMetas : fieldMetas ,
288+ FieldDescs : fieldDescs ,
290289 FeatureColumnCode : fmt .Sprintf ("{%s}" , strings .Join (featureColumnsCode , ",\n " )),
291- Y : trainStmt .Label .GetFieldMeta ()[0 ], // TODO(typhoonzero): label only support numericColumn.
290+ Y : trainStmt .Label .GetFieldDesc ()[0 ], // TODO(typhoonzero): label only support numericColumn.
292291 ModelParams : modelParams ,
293292 TrainParams : trainParams ,
294293 ValidationParams : validateParams ,
@@ -319,29 +318,29 @@ func Pred(predStmt *ir.PredictStmt, session *pb.Session) (string, error) {
319318 }
320319 featureColumnsCode := []string {}
321320 perTargetFeatureColumnsCode := []string {}
322- fieldMetas := []* ir.FieldMeta {}
321+ fieldDescs := []* ir.FieldDesc {}
323322 for target , fcList := range predStmt .TrainStmt .Features {
324323 for _ , fc := range fcList {
325324 fcCode , err := generateFeatureColumnCode (fc )
326325 if err != nil {
327326 return "" , err
328327 }
329328 perTargetFeatureColumnsCode = append (perTargetFeatureColumnsCode , fcCode )
330- if len (fc .GetFieldMeta ()) > 0 {
331- for _ , fm := range fc .GetFieldMeta () {
332- fieldMetas = append (fieldMetas , fm )
329+ if len (fc .GetFieldDesc ()) > 0 {
330+ for _ , fm := range fc .GetFieldDesc () {
331+ fieldDescs = append (fieldDescs , fm )
333332 }
334333 }
335334 }
336335 featureColumnsCode = append (featureColumnsCode ,
337336 fmt .Sprintf ("\" %s\" : [%s]" , target , strings .Join (perTargetFeatureColumnsCode , ",\n " )))
338337 }
339338 isKeras , estimatorStr := IsKerasModel (predStmt .TrainStmt .Estimator )
340- labelFM := predStmt .TrainStmt .Label .GetFieldMeta ()[0 ]
339+ labelFM := predStmt .TrainStmt .Label .GetFieldDesc ()[0 ]
341340 if labelFM .Name == "" {
342341 log .Printf ("clustering model, got result table: %s, result column: %s" , predStmt .ResultTable , predStmt .ResultColumn )
343- // no label in train SQL means a clustering model, generate a fieldmeta using result table's column
344- labelFM = & ir.FieldMeta {
342+ // no label in train SQL means a clustering model, generate a fieldDesc using result table's column
343+ labelFM = & ir.FieldDesc {
345344 Name : predStmt .ResultColumn ,
346345 Shape : []int {1 },
347346 DType : ir .Int ,
@@ -354,7 +353,7 @@ func Pred(predStmt *ir.PredictStmt, session *pb.Session) (string, error) {
354353 ResultTable : predStmt .ResultTable ,
355354 Estimator : estimatorStr ,
356355 IsKerasModel : isKeras ,
357- FieldMetas : fieldMetas ,
356+ FieldDescs : fieldDescs ,
358357 FeatureColumnCode : fmt .Sprintf ("{%s}" , strings .Join (featureColumnsCode , ",\n " )),
359358 Y : labelFM ,
360359 ModelParams : modelParams ,
0 commit comments