-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDensity_2019_06_14.tex
431 lines (331 loc) · 13.5 KB
/
Density_2019_06_14.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
\documentclass{amsart}
\usepackage{amsmath, amsthm, amscd, amssymb,latexsym,enumerate}
\usepackage{url}
\usepackage{array}
\usepackage[all]{xy}
\usepackage{enumitem}
\usepackage{hyperref}
\setlength{\textwidth}{6in}
\hoffset -.5in
\setlength{\textheight}{8.25in}
\voffset -.1in
\newenvironment{psmallmatrix}
{\left(\begin{smallmatrix}}
{\end{smallmatrix}\right)}
\newcommand{\norm}{\operatorname{Norm}}
\def\id{\mathrm{id}}
\def\i{\mathrm{i}}
\def\Idem{\mathrm{Id}}
\def\Im{\mathrm{Im}}
\def\Ker{\mathrm{Ker}}
\def\B{\mathbf{B}}
\def\Z{\mathbb{Z}}
\def\Q{\mathbb{Q}}
\def\F{\mathbb{F}}
\def\R{\mathbb{R}}
\def\C{\mathbb{C}}
\def\p{{\mathfrak{p}}}
\def\q{{\mathfrak{q}}}
\def\proj{\mathrm{proj}}
\def\r{{r}}
\def\h{{h}}
\def\yy{{\alpha}}
\def\g{{f_0}}
\def\ddd{{\delta}}
\def\SS{{\mathcal S}}
\def\D{{\mathcal D}}
\def\P{\mathbb{P}}
\def\NN{{\mathcal N}}
\def\FF{{\mathcal F}}
\def\BB{{\mathcal B}}
\def\CC{{\mathbf C}}
\def\ee{{\varepsilon}}
\def\eee{{\tilde{\varepsilon}}}
\def\G{{G}}
\def\A{{\mathbb A}}
\def\AA{{\mathcal A}}
\def\N{\mathrm{N}}
\def\Spec{\mathrm{Spec}}
\def\coker{\mathrm{coker}}
\def\Sym{\mathrm{Sym}}
\def\minspec{\mathrm{minspec}}
\def\tr{\mathrm{tr}}
\def\Gal{\mathrm{Gal}}
\def\End{\mathrm{End}}
\def\Aut{\mathrm{Aut}}
\def\tor{\mathrm{tor}}
\def\tors{\mathrm{tors}}
\def\M{\mathrm{M}}
\def\im{\mathrm{im}}
\def\invar{\mathrm{inv}}
\def\Hom{\mathrm{Hom}}
\def\Isom{\mathrm{Isom}}
\def\fchar{\mathrm{char}}
\def\GL{\mathrm{GL}}
\def\SL{\mathrm{SL}}
\def\Sp{\mathrm{Sp}}
\def\GSp{\mathrm{GSp}}
\def\dim{\mathrm{dim}}
\def\exp{\mathrm{exp}}
\def\lcm{\mathrm{lcm}}
\def\log{\mathrm{log}}
\def\det{\mathrm{det}}
\def\rk{\mathrm{rank}}
\def\rank{\mathrm{rank}}
\def\I{{\mathcal I}}
\def\Id{\mathrm{Id}}
\def\ord{\mathrm{ord}}
\def\O{{\mathcal O}}
\def\Zp{\Z_p}
\def\bmu{{\boldsymbol\mu}}
\def\rr{{\mathbf r}}
\def\ss{{\mathbf s}}
\def\m{{\mathfrak m}}
\def\mm{{\mathfrak m}}
\def\ff{{\mathfrak f}}
\def\jj{{\mathfrak j}}
\def\kk{{\mathfrak k}}
\def\nn{{\mathfrak n}}
\def\a{{\mathfrak a}}
\def\b{{\mathfrak b}}
\def\cc{{\mathfrak c}}
\def\sf#1{s({#1})}
\def\pile#1#2{\genfrac{}{}{0pt}{1}{#1}{#2}}
\def\bij{\varphi}
\def\T{{\mathbb T}}
\def\H{{\mathcal H}}
\def\X{{\mathcal X}}
\def\cA{{\mathcal A}}
\def\cT{{\mathbb T}}
\def\cG{{\mathcal G}}
\def\FFF{{\mathcal F}}
\def\cX{{\mathbb X}}
\def\n{{n}}
\def\e{{e}}
\def\F{{\mathbb F}}
\def\Fp{\F_p}
\def\Fq{\F_q}
\def\Fqn{\F_{q^n}}
\def\Tr{\mathrm{Tr}}
\def\Trace{\mathrm{Tr}}
\def\trace{\mathrm{Tr}}
\def\empt{~}
\def\secmult#1{{\alpha_{#1}}}
\def\Frob{{\mathrm{Frob}}}
\def\FF{{\mathcal{F}}}
\def\ks{k_s}
\def\Res{\mathrm{Res}}
\def\Gm{\G_m}
\def\ch#1{\widehat{#1}}
\def\map#1{\;\xrightarrow{#1}\;}
\def\isomap{\map{\,\sim\,}}
\def\too{\longrightarrow}
\def\hookto{\hookrightarrow}
\def\onto{\twoheadrightarrow}
\def\dirsum#1{\underset{#1}{\textstyle\bigoplus}}
\def\sym#1{\sigma_{#1}}
\def\symt#1{\tilde{\sigma}_{#1}}
\def\Sig#1{\Sigma_{#1}}
\def\Sigp#1{\Sigma'_{#1}}
\def\bS#1{\mathbf{S}_{#1}}
\def\K{\mathcal{K}}
\def\Qb{\bar{\Q}}
\def\shortoverline#1{\hskip 5pt\overline{\hskip -5pt #1 \hskip-9pt} \hskip 9pt}
\def\isom{\xrightarrow{\sim}}
\newcommand{\hookdoubleheadrightarrow}{%
\hookrightarrow\mathrel{\mspace{-15mu}}\rightarrow
}
\renewcommand{\labelenumi}{\theenumi}
\renewcommand{\theenumi}{\rm(\roman{enumi})}
\renewcommand{\labelenumii}{\theenumii}
\renewcommand{\theenumii}{\rm(\alph{enumii})}
\numberwithin{equation}{section}
\date{June 14, 2019}
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}[thm]{Lemma}
\newtheorem{cor}[thm]{Corollary}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{conj}[thm]{Conjecture}
\newtheorem{prob}[thm]{Problem}
\theoremstyle{definition}
\newtheorem{defn}[thm]{Definition}
\newtheorem{algorithm}[thm]{Algorithm}
\newtheorem{quest}[thm]{Question}
\newtheorem{ex}[thm]{Example}
\newtheorem{exs}[thm]{Examples}
\newtheorem{rem}[thm]{Remark}
\newtheorem{rems}[thm]{Remarks}
\title
[]
{}
%\author[E.\ Rains]{E.\ Rains}
%\address{}
%\email{}
%\author[?]{?}
%\address{}
%\email{}
%\author[A.\ Silverberg]{A.\ Silverberg}
%\address{Department of Mathematics, University of California, Irvine, CA 92697, USA}
%\email{[email protected]}
%\subjclass[2010]{??}
%\keywords{abelian varieties}
%\thanks{Support for the research was provided by the Alfred P.~Sloan Foundation
%and the National Science Foundation.}
\begin{document}
%\begin{abstract}
%\end{abstract}
\maketitle
\section{Introduction}
Let $\AA_g$ denote the moduli space of principally polarized abelian varieties of dimension $g$.
\begin{thm}
\label{mainthm}
Every rational function on $\AA_g$ that is constant on every isomorphism class of unpolarized abelian varieties is constant on every product of elliptic curves.
\end{thm}
\section{Definitions and notation}
\begin{defn}
Let $\SS_g$ denote the set of $(A,B) \in \AA_g \times \AA_g$ such that $A$ and $B$ are isomorphic as unpolarized abelian varieties.
Let $\SS_{2,1} = S_2 \cap \AA_1^4$, i.e., $\SS_{2,1}$ is the set of $(E_1,E_2,E_3,E_4) \in \AA_1^4$ such that $E_1\times E_2$ and $E_3\times E_4$ are isomorphic as unpolarized abelian varieties.
\end{defn}
\begin{defn}
For us, a {\em supersingular} elliptic curve will mean that its endomorphism algebra is a quaternion algebra.
\end{defn}
\begin{defn}
If $p$ is a prime, let $SS_p$ denote the set of supersingular points in $\AA_1^4$ (over $\overline{\F}_p$).
Let $SS \subset \AA_1^4$ denote the union of the sets $SS_p$, as the prime $p$ varies.
\end{defn}
\begin{defn}
If $p$ is a prime, let $T_p \subset \SS_{2,1} \subset \AA_1^4$ denote the set of $(E_1,E_2,E_3,E_4) \in \SS_{2,1} = S_2 \cap \AA_1^4$ such that the $E_i$ are ordinary (over $\overline{\F}_p$) and isogenous.
Let $T \subset \SS_{2,1} \subset \AA_1^4$ denote the union of the sets $T_p$, as the prime $p$ varies.
\end{defn}
\begin{defn}
Suppose that $m$ and $n$ are relatively prime positive integers.
Let $X_0(mn)$, as usual, be the moduli space of pairs $(E,\phi)$ such that $E \in \AA_1$
and $\phi$ is an isogeny on $E$ whose kernel is a cyclic group of order $mn$.
View $X_0(mn)$ as a subset of $\AA_1^4$ via the map
$(E,\phi) \mapsto (E,E/m\ker \phi,E/n\ker \phi,E/\ker \phi)$.
If $p$ is a prime, let $Y_p \subset \AA_1^4$ denote the union of the sets $X_0(mn) \subset \AA_1^4$, running over relatively prime positive integers $m$ and $n$ that are prime to $p$.
\end{defn}
Note that $Y_p \subset \SS_2$ via the map
$$(E,E/m\ker \phi,E/n\ker \phi,E/\ker \phi) \mapsto (E \times (E/\ker \phi),(E/m\ker \phi) \times (E/n\ker \phi)).$$
If $X$ is a subset of $\AA_g^k$ for some positive integers $g$ and $k$, write $\overline{X}$ for the Zariski closure of $X$ in $\AA_g^k$.
\begin{defn}
By a {\bf square} we mean $(E,E_A,E_B,E_AB) \in \AA_1^4$ and a commutative diagram
$$
\xymatrix@C=15pt{
& E \ar[ld]_{\varphi_A} \ar[rd]^{\varphi_B} \\
E_A \ar[rd]_{\psi_B} & & \ar[ld]^{\psi_A} E_B \\
& E_{AB}
}
$$
where
the maps
$\varphi_A$, $\varphi_B$, $\psi_A$, and $\psi_B$
are isogenies such that
\begin{enumerate}
\item
$(\deg(\varphi_A),\deg(\varphi_B)) = 1$,
\item
$\ker \psi_B = \varphi_A(\ker \varphi_B)$,
\item
$\ker \psi_A = \varphi_B(\ker \varphi_A)$.
\end{enumerate}
\end{defn}
\section{Some background}
\begin{thm}[Deligne]
\label{DeligneSSthm}
If $g \ge 2$ and $E_1,\ldots,E_g,E_1',\ldots,E_g'$ are supersingular elliptic curves in characteristic $p$, then $E_1\times\cdots\times E_g$ and $E_1'\times\cdots\times E_g'$ are isomorphic over every extension over which all the endomorphisms are defined.
\end{thm}
\section{Some density results}
\begin{conj}
If $g > 1$, then the set $\SS_g$ is Zariski-dense in $\AA_g \times \AA_g$.
\end{conj}
The strategy for showing density (of $T$ in $\AA_1^4$?) is to first show that the CM points are dense in $X_0(mn)(\overline{\Q})$ for all relatively prime positive integers $m$ and $n$. (Perhaps the finite field case suffices?) Then show that the union of the images of the sets $X_0(mn)$ is dense (and thus CM points in there are dense). Note that the union of the sets $X_0(p)$ is dense in $(\P^1)^2$ since it's a hypersurface of degree that goes to infinity, so the set of tuples $(E,E/p\ker \phi,E/q\ker \phi)$ is dense in $(\P^1)^3$ (the closure of the union has dimension at least 3, since it's dense or a hypersurface).
\begin{prop}
\label{S2A2}
\begin{enumerate}
\item
$\overline{SS} = \AA_1^4$.
\item
$\overline{\SS_2} = \AA_2 \times \AA_2$.
\end{enumerate}
\end{prop}
\begin{proof}
The key point is that anything that vanishes on $SS_p$ has multidegree at least ${\frac{p-1}{12}}$ on each factor.
Then vary $p$ to get that $\overline{SS} = \AA_1^4$.
We have $SS_p \subset \SS_{2,1}$, and the set $SS_p$ has multidegree ${\frac{p-1}{12}}$ (in the stacky sense, i.e., adjoin level 5 and level 7 structure, or any level $\ell$ structure for $\ell \ge 5$; then the number of points is ${\frac{p-1}{12}}|\Sp_2(\F_\ell)|$; this number might not be an integer, but that's OK since it's a Deligne-Mumford stack so it's nice...).
It follows that any function that vanishes on $\SS_{2,1}$ has multidegree at least ${\frac{p-1}{12}}$. This holds for all primes $p$. Over $\Z$, this gives a lower bound on the degree of any function $f$ that vanishes on $\SS_{2,1}$.
Varying $p$ shows that no such function exists, giving that $\SS_2$ is Zariski-dense in $\AA_2 \times \AA_2$.
\end{proof}
\begin{prop}
\label{TYp}
$\overline{T_p} = \overline{Y_p}$.
\end{prop}
\begin{proof}
It suffices to show that $X_0(mn) \cap T_p$ is dense in $X_0(mn)$.
This holds since if $x \in X_0(mn)(\bar{k})$ is such that the corresponding elliptic curve $E$ is not supersingular, then $x\in T$ (since $T$ consists of ordinary elliptic curves). If $x \in X_0(mn)(\bar{k})$ is geometrically CM (to avoid supersingular), then the $mn$ isogeny comes from an ideal $\a_{mn}$. If $\gcd(m,n)=1$, then $\a_{mn}=\a_{m} \times \a_{n}$. This gives the square. So $x \in T$.
Can construct a square from any point in $X_0(mn)$. A CM point in $X_0(mn)$ comes nominally from $T$.
The point is that if $x \in X_0(mn)({\F_q})$, this gives a cyclic $mn$-isogeny whose domain is CM, since it's over $\F_q$ (if you exclude the finitely many supersingular points). Isogenies correspond to ideals in $\End(E)$ (modulo whether $\End(E)$ is maximal...). Thus $x \in T(\F_q) \subset T_p$.
These $x$ are dense (since they're all but finitely many of the points in $\overline{\F_q}$).
We now have that $X_0(mn) \cap \overline{T_p}$ is the fiber over $p$ of the $\Z$-scheme $X_0(mn)$.
The above shows that $\overline{T_p} = \overline{Y_p}$.
\end{proof}
\begin{prop}
\label{SSYp}
$SS_p \subset \overline{Y_p}$.
\end{prop}
\begin{proof}
\end{proof}
\begin{prop}
\label{TA1}
$\overline{T} = \AA_1^4$.
\end{prop}
\begin{proof}
Suppose $p$ is a prime and $h$ is an algebraic function that vanishes on $T_p$.
Then $h$ vanishes on $\overline{T_p}$, so $h$ vanishes on $\overline{Y_p}$ by Proposition \ref{TYp}, so $h$ vanishes on $SS_p \subset \overline{Y_p}$ by Proposition \ref{SSYp}, giving that $h$ has multidegree at least ${\frac{p-1}{12}}$ on each factor.
Varying $p$ and applying Proposition \ref{S2A2}(i) gives the desired result.
\end{proof}
(The next result isn't used in the proof of the main results.)
\begin{cor}
\label{SS21A14}
$\overline{\SS_{2,1}} = \AA_1^4$.
\end{cor}
\begin{proof}
This follows from Proposition \ref{S2A2}(i) since $SS \subset \SS_{2,1}$.
\end{proof}
\section{Proof of Theorem \ref{mainthm}}
One can hopefully reduce everything to the case $n=2$.
The next result (which isn't really used) says that if $\invar(E_1,\ldots,E_g)$ is an isomorphism invariant and is ``algebraic'', then $\invar$ factors through $j$.
\begin{prop}
Suppose $\invar(E_1,\ldots,E_g)$ is an isomorphism invariant and is ``algebraic''. Then there exists $F \in k(x_1,...,x_g)^{S_g}$ such that
$$
\invar(E_1,\ldots,E_g) = F(j(E_1),\ldots,j(E_g))
$$
for {\em all} tuples $(E_1,\ldots,E_g)$ of elliptic curves over $k$.
\end{prop}
\begin{proof}
If $\invar(E_1,\ldots,E_g)$ is an isomorphism invariant and is ``algebraic'', then it will work for all tuples $(E_1,\ldots,E_g)$ (not just ordinary isogenous ones). For generic $E_1,\ldots,E_g$, the product $E_1\times \ldots\times E_g$ has a unique principal polarization, so $E_1\times \ldots\times E_g$ and $E_1'\times \ldots\times E_g'$ are isomorphic if and only if the unordered sets $\{ E_1,\ldots,E_g\}$ and $\{ E_1',\ldots,E_g'\}$ are the same.
\end{proof}
So for ordinary isogenous elliptic curves, if $E_1\times E_2$ and $E_1'\times E_2'$ are isomorphic (as unpolarized abelian varieties), then
$$
F(j(E_1),j(E_2),j(E_3),\ldots,j(E_g)) = F(j(E_1'),j(E_2'),j(E_3),\ldots,j(E_g)).
$$
However over $\overline{\Q}$, the sets $\{ \{ j(E_1),j(E_2)\},\{j(E_3),j(E_4)\} : E_1\times E_2 \cong E_3\times E_4 \}$
are Zariski-dense in $\Sym^2(\P^2)$.
(We will consider $F(x,y)-F(z,w)$ as a function on $(\P^1)^2 \times (\P^1)^2$. It vanishes on a dense set, so it is the zero map, so $h$ is constant.)
Theorem \ref{mainthm} in the case $g=2$ is an immediate consequence of the following result.
\begin{thm}
\label{mainthmT}
If $\invar : \AA_g \to \P^1$ is a rational function that is constant on each isomorphism class of unpolarized abelian varieties of the form $\prod_{i=1}^g E_i$ for which the $E_i$ are isogenous and ordinary, then $\invar$ is constant on $\AA_1^g$.
\end{thm}
\begin{proof}
(This is just for $g=2$.)
Define $h : \AA_1^4 \to \P^1$ by
$$
h(E_1,E_2,E_3,E_4) = \invar(E_1\times E_2)-\invar(E_3\times E_4).
$$
The hypotheses imply that $h$ vanishes on $T$. So $h$ vanishes on $\AA_1^4$, by Proposition \ref{TA1}. Thus, $\invar$ is constant on $\AA_1^2 \subset \AA_2$.
\end{proof}
%\begin{thebibliography}{99}
% \bibitem{?}
%\end{thebibliography}
\end{document}