-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcupidal_q.tex
189 lines (142 loc) · 4.78 KB
/
cupidal_q.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
\documentclass {amsart}
\usepackage{amsmath, amsthm, amsfonts, amssymb}
%\usepackage{tikz} \usetikzlibrary{positioning} % for commutative diagrams
%%%% Theorem-type MACROS
\theoremstyle{plain}
\newtheorem{proposition}{Proposition}
\newtheorem{theorem}[proposition]{Theorem}
\newtheorem{corollary}[proposition]{Corollary}
\newtheorem*{observe}{Observation}
\newtheorem{lemma}[proposition]{Lemma}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\newtheorem{exercise}{Exercise}
\newtheorem{axiom}{Axiom}
\newtheorem{declaration}[axiom]{Declaration}
\theoremstyle{remark}
\newtheorem{example}{Example}
\newtheorem*{remark}{Remark}
\newtheorem*{note}{Note}
\newtheorem*{assumption}{Background Assumption}
%%%% Character MACROS
\newcommand{\defeq}{\stackrel{\mathrm{def}}{\, = \,}}
\newcommand{\bN}{{\mathbb{N}}}
\newcommand{\bZ}{{\mathbb{Z}}}
\newcommand{\Z}{{\mathbb{Z}}}
\newcommand{\bR}{{\mathbb{R}}}
\newcommand{\bC}{{\mathbb{C}}}
\newcommand{\bQ}{{\mathbb{Q}}}
\newcommand{\bF}{{\mathbb{F}}}
\newcommand{\bA}{{\mathbb{A}}}
\newcommand{\bP}{{\mathbb{P}}}
\newcommand{\h}{{\mathcal{H}}}
%%%%%%%%%% END OF MACROS %%%%%%%%%%%%
\begin{document}
\title{Cuspidal $q$ (DRAFT)}
\author{Modular Form Study Group}
\date{September 2014, modified \today}
\maketitle
%%%%%%%%%%%%%%%%%%%%
If the $q$ coordinate of point is small with respect to one cusp, how does that point look from the point of view of other cusps? In other words, how close to $1$ is the $q$-value with respect to other cusps?
\section{Draft}
Fix positive bounds $X$ and $Y$.
Let $S$ be the strip~$\{ x + y i \in \h \; \mid \; |x| \le X, \; y \ge Y \}$.
Let
$$ \alpha = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix} \in SL (2, \bZ).$$
be such that $c \ne 0$. In other words, $\alpha$ transforms
the cusp at infinity to the rational number~$a/c$.
Fix $z \in S$ and define $x, y \in\bR$ and $q \in \bC$ by the formulas $z = x + y i$
and $q = \exp (2 \pi i z)$.
Let $z' = \alpha(z)$, and define $x, y \in \bR$ and $q \in \bC$ by the formulas $z' = x '+ y' i$
and $q' = \exp (2 \pi i z')$.
Clearly when $|q|$ is close to zero, $|q'|$ will be close to one. We want to quantify this behavior. In particular, for what follows we will need lower bounds for $1 - |q'|$ in terms of~$|q|$.
The constants below are to be understood to depend on $X, Y, \alpha$, but to be independent
of the choice of~$z \in S$.
\begin{lemma}\label{l1}
There are positive constants $C_1$ and $C_2$ such that
$$
C_1 \; y \le |c z + d| \le C_2\; y.
$$
\end{lemma}
\begin{proof}
The imaginary part of $c z + d$ is $c y$, so the left inequality holds.
By considering real and imaginary parts we have (by the triangle inequality)
$$
|c z + d | \le |c x + d| + |c y| \le |c| X + |d| + |c| y.
$$
Let $K = |c| X + |d|$. So
$$
|c z + d | \le K + |c| y \le K \frac{y}{Y} + |c| y = \left( \frac{K}{Y} + |c|\right) y
$$
\end{proof}
Clearly as $y$ goes to infinity, $y'$ approaches zero. The following quantifies how fast $y'$ approaches zero.
\begin{corollary}\label{c2}
There are constants $D_1$ and $D_2$ such that
$$
\frac{D_1}{y} \le y' \le \frac{D_2}{y}.
$$
\end{corollary}
\begin{proof}
This follows from the above lemma and the formula $y' = y / |c z + d|^2$.
In fact we can take $D_1$ to be $1/C^{2}_2$, and $D_2$ to be $1/C^2_1$
where $C_1$ and $C_2$ are bounds appropriate in the previous lemma.
\end{proof}
\begin{lemma}\label{l3}
There is a constants $C$ such that
$$
|q'| \le 1 - C y'.
$$
\end{lemma}
\begin{proof}
Observe that $|q'| = e^{-2\pi y'}$.
Since $y \ge Y$, the above corollary gives a bound $Y'$ such that $y' \le Y'$.
By the following lemma there is a positive constant $C$, depending on~$Y'$, such that
$$
e^{-2 \pi y'} \le 1 - C y'.
$$
\end{proof}
\begin{lemma}
Fix $t_0>0$. Then
for all $t \in [-t_0, 0]$
$$
e^t \le 1 + \frac{1 - e^{-t_0}}{t_0} \cdot t.
$$
\end{lemma}
\begin{proof}
Consider the line
connecting $(-t_0, e^{-t_0})$ and $(0, 1)$.
Use the fact that the second derivative of $t \mapsto e^t$ is positive.
\end{proof}
Here is our main proposition on the size of $q'$:
\begin{proposition}
There is a positive constant $C$ such that
$$
1 - \left| q' \right| \ge \frac{C}{\log \left|q^{-1}\right| }.
$$
\end{proposition}
\begin{proof}
Combining Corollary~\ref{c2} and Lemma~\ref{l3}, we can find a constant $K$ such that
$$
|q'| \le 1 - \frac{K}{y}.
$$
However, $\log \left|q^{-1}\right| = 2 \pi y$.
So
$$
|q'| \le 1 - \frac{2 \pi K}{\log \left|q^{-1}\right| }.
$$
\end{proof}
We will also need the following:
\begin{proposition}
There are positive constants $D_1$ and $D_2$ such that
$$
\frac{D_1}{\log \left|q^{-1}\right| } \le |c z + d| \le \frac{D_2}{\log \left|q^{-1}\right| }.
$$
\end{proposition}
\begin{proof}
This is just a restatement of Lemma~1 using the equation
$\log \left|q^{-1}\right| = 2 \pi y$.
\end{proof}
\end{document}