-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathgeometry.h
187 lines (153 loc) · 6.15 KB
/
geometry.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#pragma once
#include <cmath>
#include <cassert>
#include <iostream>
template<int n> struct vec {
double data[n] = {0};
double& operator[](const int i) { assert(i>=0 && i<n); return data[i]; }
double operator[](const int i) const { assert(i>=0 && i<n); return data[i]; }
};
template<int n> double operator*(const vec<n>& lhs, const vec<n>& rhs) {
double ret = 0; // N.B. Do not ever, ever use such for loops! They are highly confusing.
for (int i=n; i--; ret+=lhs[i]*rhs[i]); // Here I used them as a tribute to old-school game programmers fighting for every CPU cycle.
return ret; // Once upon a time reverse loops were faster than the normal ones, it is not the case anymore.
}
template<int n> vec<n> operator+(const vec<n>& lhs, const vec<n>& rhs) {
vec<n> ret = lhs;
for (int i=n; i--; ret[i]+=rhs[i]);
return ret;
}
template<int n> vec<n> operator-(const vec<n>& lhs, const vec<n>& rhs) {
vec<n> ret = lhs;
for (int i=n; i--; ret[i]-=rhs[i]);
return ret;
}
template<int n> vec<n> operator*(const vec<n>& lhs, const double& rhs) {
vec<n> ret = lhs;
for (int i=n; i--; ret[i]*=rhs);
return ret;
}
template<int n> vec<n> operator*(const double& lhs, const vec<n> &rhs) {
return rhs * lhs;
}
template<int n> vec<n> operator/(const vec<n>& lhs, const double& rhs) {
vec<n> ret = lhs;
for (int i=n; i--; ret[i]/=rhs);
return ret;
}
template<int n> std::ostream& operator<<(std::ostream& out, const vec<n>& v) {
for (int i=0; i<n; i++) out << v[i] << " ";
return out;
}
template<> struct vec<2> {
double x = 0, y = 0;
double& operator[](const int i) { assert(i>=0 && i<2); return i ? y : x; }
double operator[](const int i) const { assert(i>=0 && i<2); return i ? y : x; }
};
template<> struct vec<3> {
double x = 0, y = 0, z = 0;
double& operator[](const int i) { assert(i>=0 && i<3); return i ? (1==i ? y : z) : x; }
double operator[](const int i) const { assert(i>=0 && i<3); return i ? (1==i ? y : z) : x; }
};
template<> struct vec<4> {
double x = 0, y = 0, z = 0, w = 0;
double& operator[](const int i) { assert(i>=0 && i<4); return i<2 ? (i ? y : x) : (2==i ? z : w); }
double operator[](const int i) const { assert(i>=0 && i<4); return i<2 ? (i ? y : x) : (2==i ? z : w); }
vec<2> xy() const { return {x, y}; }
vec<3> xyz() const { return {x, y, z}; }
};
typedef vec<2> vec2;
typedef vec<3> vec3;
typedef vec<4> vec4;
template<int n> double norm(const vec<n>& v) {
return std::sqrt(v*v);
}
template<int n> vec<n> normalized(const vec<n>& v) {
return v / norm(v);
}
inline vec3 cross(const vec3 &v1, const vec3 &v2) {
return {v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x};
}
template<int n> struct dt;
template<int nrows,int ncols> struct mat {
vec<ncols> rows[nrows] = {{}};
vec<ncols>& operator[] (const int idx) { assert(idx>=0 && idx<nrows); return rows[idx]; }
const vec<ncols>& operator[] (const int idx) const { assert(idx>=0 && idx<nrows); return rows[idx]; }
double det() const {
return dt<ncols>::det(*this);
}
double cofactor(const int row, const int col) const {
mat<nrows-1,ncols-1> submatrix;
for (int i=nrows-1; i--; )
for (int j=ncols-1;j--; submatrix[i][j]=rows[i+int(i>=row)][j+int(j>=col)]);
return submatrix.det() * ((row+col)%2 ? -1 : 1);
}
mat<nrows,ncols> invert_transpose() const {
mat<nrows,ncols> adjugate_transpose; // transpose to ease determinant computation, check the last line
for (int i=nrows; i--; )
for (int j=ncols; j--; adjugate_transpose[i][j]=cofactor(i,j));
return adjugate_transpose/(adjugate_transpose[0]*rows[0]);
}
mat<nrows,ncols> invert() const {
return invert_transpose().transpose();
}
mat<ncols,nrows> transpose() const {
mat<ncols,nrows> ret;
for (int i=ncols; i--; )
for (int j=nrows; j--; ret[i][j]=rows[j][i]);
return ret;
}
};
template<int nrows,int ncols> vec<ncols> operator*(const vec<nrows>& lhs, const mat<nrows,ncols>& rhs) {
return (mat<1,nrows>{{lhs}}*rhs)[0];
}
template<int nrows,int ncols> vec<nrows> operator*(const mat<nrows,ncols>& lhs, const vec<ncols>& rhs) {
vec<nrows> ret;
for (int i=nrows; i--; ret[i]=lhs[i]*rhs);
return ret;
}
template<int R1,int C1,int C2>mat<R1,C2> operator*(const mat<R1,C1>& lhs, const mat<C1,C2>& rhs) {
mat<R1,C2> result;
for (int i=R1; i--; )
for (int j=C2; j--; )
for (int k=C1; k--; result[i][j]+=lhs[i][k]*rhs[k][j]);
return result;
}
template<int nrows,int ncols>mat<nrows,ncols> operator*(const mat<nrows,ncols>& lhs, const double& val) {
mat<nrows,ncols> result;
for (int i=nrows; i--; result[i] = lhs[i]*val);
return result;
}
template<int nrows,int ncols>mat<nrows,ncols> operator/(const mat<nrows,ncols>& lhs, const double& val) {
mat<nrows,ncols> result;
for (int i=nrows; i--; result[i] = lhs[i]/val);
return result;
}
template<int nrows,int ncols>mat<nrows,ncols> operator+(const mat<nrows,ncols>& lhs, const mat<nrows,ncols>& rhs) {
mat<nrows,ncols> result;
for (int i=nrows; i--; )
for (int j=ncols; j--; result[i][j]=lhs[i][j]+rhs[i][j]);
return result;
}
template<int nrows,int ncols>mat<nrows,ncols> operator-(const mat<nrows,ncols>& lhs, const mat<nrows,ncols>& rhs) {
mat<nrows,ncols> result;
for (int i=nrows; i--; )
for (int j=ncols; j--; result[i][j]=lhs[i][j]-rhs[i][j]);
return result;
}
template<int nrows,int ncols> std::ostream& operator<<(std::ostream& out, const mat<nrows,ncols>& m) {
for (int i=0; i<nrows; i++) out << m[i] << std::endl;
return out;
}
template<int n> struct dt { // template metaprogramming to compute the determinant recursively
static double det(const mat<n,n>& src) {
double ret = 0;
for (int i=n; i--; ret += src[0][i] * src.cofactor(0,i));
return ret;
}
};
template<> struct dt<1> { // template specialization to stop the recursion
static double det(const mat<1,1>& src) {
return src[0][0];
}
};