-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathML_util.cpp
212 lines (184 loc) · 6.27 KB
/
ML_util.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#include "ML_util.h"
using namespace bpp;
using namespace std;
scalar_type tree_LL(string tree,string aln_filename,bool optimize_bls,scalar_type tolerance)
{
const Alphabet* alphabet = new ProteicAlphabet();
OrderedSequenceContainer *alignment;
VectorSiteContainer* sites;
Fasta Reader;
//Phylip * Reader=new Phylip(true,true,100,true,"\r");
alignment = Reader.read(aln_filename, alphabet);
sites = new VectorSiteContainer(*alignment);
SiteContainerTools::changeGapsToUnknownCharacters(*sites);
TreeTemplate<Node>* ttree1=TreeTemplateTools::parenthesisToTree(tree,false,"ID");
//Newick newick1;
//ttree1 = newick1.read(tree);
DiscreteRatesAcrossSitesTreeLikelihood* tl1;
SubstitutionModel* model = 0;
DiscreteDistribution* rDist = 0;
model = new LG08(&AlphabetTools::PROTEIN_ALPHABET, new FullProteinFrequenciesSet(&AlphabetTools::PROTEIN_ALPHABET), true);
model->setFreqFromData(*sites);
rDist = new GammaDiscreteDistribution(4, 1, 1);
tl1 = new RHomogeneousTreeLikelihood(*ttree1, *sites, model, rDist, true, false, false);
tl1->initialize();
/*
if (optimize_bls)
{
Optimizer* optimizer = new PseudoNewtonOptimizer(tl1);
// Optimizer* optimizer = new PseudoNewtonOptimizer(tl1);
ParameterList * parameters= new ParameterList();
parameters->addParameters( tl1->getBranchLengthsParameters());
parameters->addParameters( tl1->getRateDistributionParameters());
//Newton..
optimizer->setConstraintPolicy(AutoParameter::CONSTRAINTS_AUTO);
optimizer->setProfiler(0);
optimizer->setMessageHandler(0);
optimizer->setVerbose(0);
optimizer->getStopCondition()->setTolerance(0.01);
optimizer->init(*parameters);
//optimizer->init(tl1->getParameters());
optimizer->setMaximumNumberOfEvaluations(1000);
optimizer->optimize();
delete parameters;
delete optimizer;
}
*/
if (optimize_bls)
{
//Newton..
ParameterList * parameters= new ParameterList();
parameters->addParameters( tl1->getBranchLengthsParameters());
parameters->addParameters( tl1->getRateDistributionParameters());
OptimizationTools::optimizeNumericalParameters(
dynamic_cast<DiscreteRatesAcrossSitesTreeLikelihood*> (tl1),
//tl1->getParameters(),
*parameters,
0,
1,
tolerance,
1000,
0,
0,
false,
0,
OptimizationTools::OPTIMIZATION_NEWTON,
//OptimizationTools::OPTIMIZATION_BRENT);
OptimizationTools::OPTIMIZATION_BFGS);
delete parameters;
}
scalar_type LL=- tl1->getValue(); //Here's your log likelihood value !
delete sites;
delete alphabet;
delete model;
delete rDist;
delete tl1;
return LL;
}
vector<string> all_NNIs(string Sstring,bool rooted)
{
tree_type * S = TreeTemplateTools::parenthesisToTree(Sstring);
vector<string> NNIs;
vector < Node * > nodes = S->getNodes();
NNIs.push_back(TreeTemplateTools::treeToParenthesis(*S));
if (nodes.size()<4)
return NNIs;
Node * root=S->getRootNode();
for (vector < Node *> :: iterator ni=nodes.begin();ni!=nodes.end(); ni++)
if (!((*ni)==root) && !((*ni)->isLeaf()) && (!((*ni)->getFather()==root) || rooted))
{
Node * node0=(*ni)->getSon(0);
Node * node1=(*ni)->getSon(1);
Node * father=(*ni)->getFather();
Node * node2;
if (father->getSon(0)==(*ni))
node2=father->getSon(1);
else
node2=father->getSon(0);
//disolve
(*ni)->removeSons();
father->removeSons();
//NNI 1.
(*ni)->addSon(node0);
(*ni)->addSon(node2);
father->addSon((*ni));
father->addSon(node1);
NNIs.push_back(TreeTemplateTools::treeToParenthesis(*S));
//disolve
(*ni)->removeSons();
father->removeSons();
//NNI 2.
(*ni)->addSon(node1);
(*ni)->addSon(node2);
father->addSon((*ni));
father->addSon(node0);
NNIs.push_back(TreeTemplateTools::treeToParenthesis(*S));
//disolve
(*ni)->removeSons();
father->removeSons();
//restore
(*ni)->addSon(node0);
(*ni)->addSon(node1);
father->addSon((*ni));
father->addSon(node2);
}
return NNIs;
}
pair<string,scalar_type> tree_LL_nucl(string tree,string aln_filename,bool optimize_bls,scalar_type tolerance)
{
//const Alphabet* alphabet = new ProteicAlphabet();
const Alphabet* alphabet = new RNA();
OrderedSequenceContainer *alignment;
VectorSiteContainer* sites;
Fasta Reader;
//NexusIOSequence Reader;
//Phylip * Reader=new Phylip(true,true,100,true,"\r");
alignment = Reader.read(aln_filename, alphabet);
sites = new VectorSiteContainer(*alignment);
SiteContainerTools::removeGapOnlySites(*sites);
SiteContainerTools::changeGapsToUnknownCharacters(*sites);
TreeTemplate<Node>* ttree1=TreeTemplateTools::parenthesisToTree(tree,false,"ID");
DiscreteRatesAcrossSitesTreeLikelihood* tl1;
SubstitutionModel* model = 0;
DiscreteDistribution* rDist = 0;
model = new GTR(&AlphabetTools::RNA_ALPHABET);
model->setFreqFromData(*sites);
rDist = new GammaDiscreteDistribution(8, 1, 1);
tl1 = new RHomogeneousTreeLikelihood(*ttree1, *sites, model, rDist, true, false, false);
tl1->initialize();
if (optimize_bls)
{
//Newton..
ParameterList * parameters= new ParameterList();
parameters->addParameters( tl1->getBranchLengthsParameters());
parameters->addParameters( tl1->getRateDistributionParameters());
OptimizationTools::optimizeNumericalParameters(
dynamic_cast<DiscreteRatesAcrossSitesTreeLikelihood*> (tl1),
//tl1->getParameters(),
*parameters,
0,
1,
tolerance,
1000,
0,
0,
false,
0,
OptimizationTools::OPTIMIZATION_NEWTON,
//OptimizationTools::OPTIMIZATION_BRENT);
OptimizationTools::OPTIMIZATION_BFGS);
delete parameters;
}
scalar_type LL=- tl1->getValue(); //Here's your log likelihood value !
//tl1->getParameters().printParameters(cout);
//cout << TreeTemplateTools::treeToParenthesis( tl1->getTree() ) <<endl;
pair<string,scalar_type> return_pair;
return_pair.first= TreeTemplateTools::treeToParenthesis( tl1->getTree() ) ;
return_pair.second=LL;
delete sites;
delete alphabet;
delete model;
delete rDist;
delete tl1;
return return_pair;
}