|
| 1 | +import inspect |
| 2 | +from functools import partial |
| 3 | +from types import MethodType |
| 4 | + |
| 5 | +from dspy.predict.chain_of_thought import ChainOfThought |
| 6 | +from dspy.primitives.program import Module |
| 7 | +from dspy.refine.feedback import GenerateFeedback |
| 8 | +from dspy.refine.utils import get_traces |
| 9 | +from dspy.signatures.field import InputField |
| 10 | + |
| 11 | + |
| 12 | +class Refine(Module): |
| 13 | + def __init__(self, module, metrics, metric_thresholds=None, max_iter=3): |
| 14 | + self.module = module.deepcopy() |
| 15 | + self.metrics = metrics |
| 16 | + self.metric_thresholds = metric_thresholds |
| 17 | + self.max_iter = max_iter |
| 18 | + |
| 19 | + self.metric_descriptions = [self._get_metric_description(metric) for metric in metrics] |
| 20 | + self.feedback_program = ChainOfThought(GenerateFeedback) |
| 21 | + |
| 22 | + self._named_predicts = {name: predict for name, predict in self.module.named_predictors()} |
| 23 | + |
| 24 | + def _get_metric_description(self, metric): |
| 25 | + if hasattr(metric, "__repr__"): |
| 26 | + return str(metric) |
| 27 | + else: |
| 28 | + return inspect.getsource(metric.__class__) |
| 29 | + |
| 30 | + def _patch_predict_call_with_feedback(self, feedbacks): |
| 31 | + named_predicts = {} |
| 32 | + for name in feedbacks.keys(): |
| 33 | + # Only patch the predict that has feedback. |
| 34 | + named_predicts[name] = self._named_predicts[name] |
| 35 | + |
| 36 | + predict_traces = get_traces(named_predicts) |
| 37 | + |
| 38 | + def forward_with_feedback(instance, dspy_refine_feedback, dspy_refine_last_trace, **kwargs): |
| 39 | + return instance.original_forward( |
| 40 | + **kwargs, |
| 41 | + dspy_refine_feedback=dspy_refine_feedback, |
| 42 | + dspy_refine_last_trace=dspy_refine_last_trace, |
| 43 | + ) |
| 44 | + |
| 45 | + for name, predict in named_predicts.items(): |
| 46 | + last_trace = predict_traces.get(name, None) |
| 47 | + # We trim out the last round's feedback and last_trace from the inputs to avoid too much nesting. |
| 48 | + if "dspy_refine_feedback" in last_trace["inputs"]: |
| 49 | + del last_trace["inputs"]["dspy_refine_feedback"] |
| 50 | + if "dspy_refine_last_trace" in last_trace["inputs"]: |
| 51 | + del last_trace["inputs"]["dspy_refine_last_trace"] |
| 52 | + |
| 53 | + feedback = feedbacks.get(name, None) |
| 54 | + if not hasattr(predict, "original_forward"): |
| 55 | + # If the predict has never been patched for refine calls, patch it. |
| 56 | + predict.original_signature = predict.signature |
| 57 | + predict.signature = predict.signature.prepend( |
| 58 | + "dspy_refine_feedback", |
| 59 | + InputField(desc="Improvement suggestion based on last try", type=str), |
| 60 | + ).prepend("dspy_refine_last_trace", InputField(desc="Trace of the last try", type=dict)) |
| 61 | + |
| 62 | + # Save the original forward method before patching. |
| 63 | + predict.original_forward = predict.forward |
| 64 | + |
| 65 | + partial_forward = partial( |
| 66 | + forward_with_feedback, dspy_refine_feedback=feedback, dspy_refine_last_trace=last_trace |
| 67 | + ) |
| 68 | + # Patch the `forward` method to the `forward_with_feedback` methd with partial values of feedback and |
| 69 | + # last_trace. |
| 70 | + predict.forward = MethodType(partial_forward, predict) |
| 71 | + |
| 72 | + def _undo_patch_predict_call_with_feedback(self, named_predicts): |
| 73 | + for _, predict in named_predicts.items(): |
| 74 | + if hasattr(predict, "original_forward"): |
| 75 | + predict.forward = predict.original_forward |
| 76 | + predict.signature = predict.original_signature |
| 77 | + del predict.original_signature |
| 78 | + del predict.original_forward |
| 79 | + |
| 80 | + def _get_feedback_for_predicts(self, inputs, outputs): |
| 81 | + metric_descriptions = [] |
| 82 | + metric_values = [] |
| 83 | + for i, metric in enumerate(self.metrics): |
| 84 | + metric_value = metric(inputs, outputs) |
| 85 | + if self.metric_thresholds and metric_value < self.metric_thresholds[i]: |
| 86 | + metric_descriptions.append(self.metric_descriptions[i]) |
| 87 | + metric_values.append(metric_value) |
| 88 | + |
| 89 | + if len(metric_descriptions) == 0: |
| 90 | + # All metric values are above the threshold, no need to refine. |
| 91 | + return {} |
| 92 | + |
| 93 | + # Get feedback for each metric. |
| 94 | + feedbacks = self.feedback_program( |
| 95 | + metrics=metric_descriptions, |
| 96 | + metric_values=metric_values, |
| 97 | + module_inputs=inputs, |
| 98 | + module_outputs=outputs, |
| 99 | + source_code=inspect.getsource(self.module.__class__), |
| 100 | + ).feedback |
| 101 | + named_predicts = self._named_predicts |
| 102 | + |
| 103 | + predict_name_to_feedback = {} |
| 104 | + for name in named_predicts.keys(): |
| 105 | + top_module_name = name.split(".")[0] |
| 106 | + if top_module_name in feedbacks: |
| 107 | + predict_name_to_feedback[name] = feedbacks[top_module_name] |
| 108 | + elif f"self.{top_module_name}" in feedbacks: |
| 109 | + predict_name_to_feedback[name] = feedbacks[f"self.{top_module_name}"] |
| 110 | + return predict_name_to_feedback |
| 111 | + |
| 112 | + def __call__(self, **kwargs): |
| 113 | + outputs = self.module(**kwargs) |
| 114 | + |
| 115 | + for i in range(self.max_iter): |
| 116 | + feedbacks = self._get_feedback_for_predicts(kwargs, outputs) |
| 117 | + |
| 118 | + if len(feedbacks) == 0: |
| 119 | + break |
| 120 | + self._patch_predict_call_with_feedback(feedbacks) |
| 121 | + |
| 122 | + outputs = self.module(**kwargs) |
| 123 | + |
| 124 | + named_predicts = {name: predict for name, predict in self.module.named_predictors()} |
| 125 | + self._undo_patch_predict_call_with_feedback(named_predicts) |
| 126 | + return outputs |
0 commit comments