|
| 1 | +import unittest |
| 2 | +import random |
| 3 | +import torch |
| 4 | +from pyvene import CausalModel |
| 5 | +random.seed(42) |
| 6 | + |
| 7 | + |
| 8 | +class CasualModelTestCase(unittest.TestCase): |
| 9 | + @classmethod |
| 10 | + def setUpClass(self): |
| 11 | + print("=== Test Suite: CausalModelTestCase ===") |
| 12 | + self.variables = ['A', 'B', 'C'] |
| 13 | + self.values = { |
| 14 | + 'A': [False, True], |
| 15 | + 'B': [False, True], |
| 16 | + 'C': [False, True] |
| 17 | + } |
| 18 | + |
| 19 | + self.parents = { |
| 20 | + 'A': [], |
| 21 | + 'B': [], |
| 22 | + 'C': ['A', 'B'] |
| 23 | + } |
| 24 | + |
| 25 | + self.functions = { |
| 26 | + "A": lambda: True, |
| 27 | + "B": lambda: True, |
| 28 | + "C": lambda a, b: a and b |
| 29 | + } |
| 30 | + |
| 31 | + self.causal_model = CausalModel( |
| 32 | + self.variables, |
| 33 | + self.values, |
| 34 | + self.parents, |
| 35 | + self.functions |
| 36 | + ) |
| 37 | + |
| 38 | + def test_initialization(self): |
| 39 | + inputs = ['A', 'B'] |
| 40 | + outputs = ['C'] |
| 41 | + timesteps = { |
| 42 | + 'A': 0, |
| 43 | + 'B': 0, |
| 44 | + 'C': 1 |
| 45 | + } |
| 46 | + equivalence_classes = { |
| 47 | + 'C': { |
| 48 | + False: [ |
| 49 | + {'A': False, 'B': False}, |
| 50 | + {'A': False, 'B': True}, |
| 51 | + {'A': True, 'B': False} |
| 52 | + ], |
| 53 | + True: [ |
| 54 | + {'A': True, 'B': True} |
| 55 | + ] |
| 56 | + } |
| 57 | + } |
| 58 | + |
| 59 | + self.assertEqual(set(self.causal_model.inputs), set(inputs)) |
| 60 | + self.assertEqual(set(self.causal_model.outputs), set(outputs)) |
| 61 | + self.assertEqual(self.causal_model.timesteps, timesteps) |
| 62 | + self.assertEqual(self.causal_model.equiv_classes, equivalence_classes) |
| 63 | + |
| 64 | + def test_run_forward(self): |
| 65 | + # test run forward with default values (A and B set to True) |
| 66 | + self.assertEqual( |
| 67 | + self.causal_model.run_forward(), |
| 68 | + {'A': True, 'B': True, 'C': True} |
| 69 | + ) |
| 70 | + |
| 71 | + # test run forward on all possible input values |
| 72 | + for a in [False, True]: |
| 73 | + for b in [False, True]: |
| 74 | + input_setting = { |
| 75 | + 'A': a, |
| 76 | + 'B': b |
| 77 | + } |
| 78 | + output_setting = { |
| 79 | + 'A': a, |
| 80 | + 'B': b, |
| 81 | + 'C': a and b |
| 82 | + } |
| 83 | + self.assertEqual(self.causal_model.run_forward(input_setting), output_setting) |
| 84 | + |
| 85 | + # test run forward on fully specified setting |
| 86 | + output_setting = {'A': False, 'B': False, 'C': True} |
| 87 | + self.assertEqual(self.causal_model.run_forward(output_setting), output_setting) |
| 88 | + |
| 89 | + def test_run_interchange(self): |
| 90 | + # interchange intervention on input |
| 91 | + base = {'A': True, 'B': False} |
| 92 | + source = {'A': False, 'B': True} |
| 93 | + self.assertEqual(self.causal_model.run_forward(base)['C'], False) |
| 94 | + self.assertEqual(self.causal_model.run_forward(source)['C'], False) |
| 95 | + self.assertEqual( |
| 96 | + self.causal_model.run_interchange(base, {'B': source})['C'], |
| 97 | + True |
| 98 | + ) |
| 99 | + |
| 100 | + # interchange intervention on output |
| 101 | + base = {'A': False, 'B': False} |
| 102 | + source = {'A': True, 'B': True} |
| 103 | + self.assertEqual(self.causal_model.run_forward(base)['C'], False) |
| 104 | + self.assertEqual( |
| 105 | + self.causal_model.run_interchange(base, {'B': source})['C'], |
| 106 | + False |
| 107 | + ) |
| 108 | + self.assertEqual( |
| 109 | + self.causal_model.run_interchange(base, {'C': source})['C'], |
| 110 | + True |
| 111 | + ) |
| 112 | + |
| 113 | + def test_sample_input_tree_balanced(self): |
| 114 | + # NOTE: not quite sure how to test a function with random behavior |
| 115 | + # right now, fixing seed and assuming approximate behavior |
| 116 | + # (taking balanced to be less than 30-70 split) |
| 117 | + |
| 118 | + K = 100 |
| 119 | + # test sampling by output value |
| 120 | + outputs = [] |
| 121 | + for _ in range(K): |
| 122 | + sample = self.causal_model.sample_input_tree_balanced() |
| 123 | + output = self.causal_model.run_forward(sample) |
| 124 | + outputs.append(output['C']) |
| 125 | + self.assertGreaterEqual(sum(outputs), 30) |
| 126 | + self.assertLessEqual(sum(outputs), 70) |
| 127 | + |
| 128 | + # test sampling by input value |
| 129 | + inputs = [] |
| 130 | + for _ in range(K): |
| 131 | + sample = self.causal_model.sample_input_tree_balanced() |
| 132 | + inputs.append(sample['A']) |
| 133 | + self.assertGreaterEqual(sum(outputs), 30) |
| 134 | + self.assertLessEqual(sum(outputs), 70) |
| 135 | + |
| 136 | + def test_generate_factual_dataset(self): |
| 137 | + def sampler(): |
| 138 | + return {'A': False, 'B': False} |
| 139 | + |
| 140 | + size = 4 |
| 141 | + factual_dataset = self.causal_model.generate_factual_dataset( |
| 142 | + size=size, |
| 143 | + sampler=sampler, |
| 144 | + return_tensors=False |
| 145 | + ) |
| 146 | + self.assertEqual(len(factual_dataset), size) |
| 147 | + |
| 148 | + self.assertEqual(factual_dataset[0]['input_ids'], {'A': False, 'B': False}) |
| 149 | + self.assertEqual(factual_dataset[0]['labels']['C'], False) |
| 150 | + |
| 151 | + factual_dataset_tensors = self.causal_model.generate_factual_dataset( |
| 152 | + size=size, |
| 153 | + sampler=sampler, |
| 154 | + return_tensors=True |
| 155 | + ) |
| 156 | + self.assertEqual(len(factual_dataset_tensors), size) |
| 157 | + X = torch.stack([example['input_ids'] for example in factual_dataset_tensors]) |
| 158 | + y = torch.stack([example['labels'] for example in factual_dataset_tensors]) |
| 159 | + self.assertEqual(X.shape, (size, 2)) |
| 160 | + self.assertEqual(y.shape, (size, 1)) |
| 161 | + self.assertTrue(torch.equal(X[0], torch.tensor([0., 0.]))) |
| 162 | + self.assertTrue(torch.equal(y[0], torch.tensor([0.]))) |
| 163 | + |
| 164 | + def test_generate_counterfactual_dataset(self): |
| 165 | + def sampler(*args, **kwargs): |
| 166 | + if kwargs.get('output_var', None): |
| 167 | + return {'A': True, 'B': True} |
| 168 | + |
| 169 | + return {'A': True, 'B': False} |
| 170 | + |
| 171 | + def intervention_sampler(*args, **kwargs): |
| 172 | + return {'B': True} |
| 173 | + |
| 174 | + def intervention_id(*args, **kwargs): |
| 175 | + return 0 |
| 176 | + |
| 177 | + size = 4 |
| 178 | + counterfactual_dataset = self.causal_model.generate_counterfactual_dataset( |
| 179 | + size=size, |
| 180 | + batch_size=1, |
| 181 | + intervention_id=intervention_id, |
| 182 | + sampler=sampler, |
| 183 | + intervention_sampler=intervention_sampler, |
| 184 | + return_tensors=False |
| 185 | + ) |
| 186 | + self.assertEqual(len(counterfactual_dataset), size) |
| 187 | + example = counterfactual_dataset[0] |
| 188 | + self.assertEqual(example['input_ids'], {'A': True, 'B': False}) |
| 189 | + self.assertEqual(example['source_input_ids'][0]['B'], True) |
| 190 | + self.assertEqual(example['intervention_id'], [0]) |
| 191 | + self.assertEqual(example['base_labels']['C'], False) # T and F |
| 192 | + self.assertEqual(example['labels']['C'], True) # T and T |
| 193 | + |
| 194 | + |
| 195 | +def suite(): |
| 196 | + suite = unittest.TestSuite() |
| 197 | + suite.addTest(CasualModelTestCase("test_initialization")) |
| 198 | + suite.addTest(CasualModelTestCase("test_run_forward")) |
| 199 | + suite.addTest(CasualModelTestCase("test_run_interchange")) |
| 200 | + suite.addTest(CasualModelTestCase("test_sample_input_tree_balanced")) |
| 201 | + suite.addTest(CasualModelTestCase("test_generate_factual_dataset")) |
| 202 | + suite.addTest(CasualModelTestCase("test_generate_counterfactual_dataset")) |
| 203 | + return suite |
| 204 | + |
| 205 | + |
| 206 | +if __name__ == "__main__": |
| 207 | + runner = unittest.TextTestRunner() |
| 208 | + runner.run(suite()) |
0 commit comments