-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenetic_Algorithm.py
122 lines (77 loc) · 3.06 KB
/
Genetic_Algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Genetic_Algorithm.py manages algorithm for evolving population
import Population
import Tour
import random
class Genetic_Algorithm:
def __init__(self, tm):
self.tm = tm
self.__mutation_rate = 0.015
self.__tournament_size = 5
self.__elitism = True
# Evolves a population over one generation
def evolve_population(self, pop):
new_population = Population.Population(pop.get_population_size(), False, self.tm)
# Keep our best individual if elitism is enabled
elitism_offset = 0
if self.__elitism:
new_population.save_tour(0, pop.get_fittest())
elitism_offset = 1
# Crossover population
# Loop over new population's size and creates individuals from current population
for i in range(elitism_offset, new_population.get_population_size()):
# Select parents
parent_1 = self.tournament_selection(pop)
parent_2 = self.tournament_selection(pop)
# Crossover parents
child = self.crossover(parent_1, parent_2)
# Add child to new population
new_population.save_tour(i, child)
# Mutate the new population a bit to add some new genetic material
for i in range(elitism_offset, new_population.get_population_size()):
self.mutate(new_population.get_tour(i))
return new_population
# Applies crossover to a set of parents and creates offspring
def crossover(self, parent_1, parent_2):
# Create new child tour
child = Tour.Tour(self.tm)
# Get start and end sub tour positions for p1's tour
start_pos = int(random.random() * parent_1.tour_size())
end_pos = int(random.random() * parent_1.tour_size())
# Loop and add the sub tour from p1 to child
for i in range(child.tour_size()):
if start_pos < end_pos:
child.set_city(i, parent_1.get_city(i))
elif start_pos > end_pos:
if (not (i < start_pos and i > end_pos)):
child.set_city(i, parent_1.get_city(i))
# Loop through p2 for remaining tours for child
for i in range(parent_2.tour_size()):
if (not(child.contains_city(parent_2.get_city(i)))):
for j in range(child.tour_size()):
if child.get_city(j) == None:
child.set_city(j, parent_2.get_city(i))
break
return child
# Mutate a tour using swap mutation
def mutate(self, tour):
for tour_pos_1 in range(tour.tour_size()):
# Apply mutation rate
if (random.random() < self.__mutation_rate):
# Get second random position in the tour
tour_pos_2 = int(tour.tour_size() * random.random())
# Get cities at target position in tour
city1 = tour.get_city(tour_pos_1)
city2 = tour.get_city(tour_pos_2)
# Swap them around
tour.set_city(tour_pos_2, city1)
tour.set_city(tour_pos_1, city2)
# Selects candidate tour for crossover
def tournament_selection(self, pop):
tournament = Population.Population(self.__tournament_size, False, self.tm)
# For each place in the tournament get a random candidate tour and add it
for i in range(self.__tournament_size):
random_id = int(random.random() * pop.get_population_size())
tournament.save_tour(i, pop.get_tour(random_id))
# Get fittest tour
fittest = tournament.get_fittest()
return fittest