-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcs_lasso2.do
1676 lines (1415 loc) · 48.6 KB
/
cs_lasso2.do
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
* certification script for
* lassopack package 1.4.3 5jan2024, aa/ms
* parts of the script use R's glmnet and Matlab code "SqrtLassoIterative.m".
set more off
cscript "lasso2" adofile lasso2 lasso2_p lassoutils
clear all
capture log close
set rmsg on
program drop _all
log using cs_lasso2,replace
about
which lasso2
which lasso2_p
which lassoutils
* data source
//global prostate prostate.data
global prostate https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data
* simple ridge regression program
cap program drop estridge
program define estridge, rclass
syntax varlist , Lambda(real) [NOCONStant]
local yvar : word 1 of `varlist'
local xvars : list varlist - yvar
qui putmata X=(`xvars') y=(`yvar'), replace
mata: n=rows(y)
if ("`noconstant'"=="") {
mata: X=X:-mean(X)
mata: y=y:-mean(y)
}
mata: p=cols(X)
mata: beta=lusolve(X'X+(`lambda')/2*I(p),X'y)
tempname bhat
mata: st_matrix("`bhat'",beta')
mat list `bhat'
return matrix bhat = `bhat'
end
cap program drop comparemat
program define comparemat , rclass
syntax anything [, tol(real 10e-3)]
local A : word 1 of `0'
local B : word 2 of `0'
tempname Amat Bmat
mat `Amat' = `A'
mat `Bmat' = `B'
local diff=mreldif(`Amat',`Bmat')
di as text "mreldif=`diff'. tolerance = `tol'"
mat list `Amat'
mat list `Bmat'
return scalar mreldif = `diff'
assert `diff'<`tol'
end
* program to compare two vectors using col names
cap program drop comparevec
program define comparevec , rclass
syntax anything [, tol(real 10e-3)]
local A : word 1 of `0'
local B : word 2 of `0'
tempname Amat Bmat
mat `Amat' = `A'
mat `Bmat' = `B'
local Anames: colnames `Amat'
local Bnames: colnames `Bmat'
local maxdiff = 0
local num = 0
foreach var of local Anames {
local aix = colnumb(`Amat',"`var'")
local bix = colnumb(`Bmat',"`var'")
//di `aix'
//di `bix'
local thisdiff=reldif(el(`Amat',1,`aix'),el(`Bmat',1,`bix'))
if `thisdiff'>`maxdiff' {
local diff = `thisdiff'
}
local num=`num'+1
}
di as text "Max rel dif = `maxdiff'. tolerance = `tol'"
mat list `Amat'
mat list `Bmat'
return scalar maxdiff = `maxdiff'
assert `maxdiff'<`tol'
end
********************************************************************************
*** replicate glmnet ***
********************************************************************************
sysuse auto, clear
drop if rep78==.
global model price mpg-foreign
// # the following R code was run using ‘glmnet’ version 4.0-2
/*
library("glmnet")
library("haven")
library("tidyverse")
auto <- read_dta("http://www.stata-press.com/data/r9/auto.dta")
auto <- auto %>% drop_na()
n <- nrow(auto)
price <- auto$price
X <- auto[,c("mpg","rep78","headroom","trunk",
"weight","length","turn",
"displacement","gear_ratio","foreign")]
X <- X %>%
mutate(foreign = as.integer(foreign)) %>%
as.matrix()
*/
// single lambda, lasso
/*
> r<-glmnet(X,price,alpha=1,lambda=1000,thresh=1e-15)
> t(coef(r))
1 x 11 sparse Matrix of class "dgCMatrix"
[[ suppressing 11 column names ‘(Intercept)’, ‘mpg’, ‘rep78’ ... ]]
s0 4336.84 . . . . 0.3819041 . . 3.289185 . .
*/
mat G = 0.3819041, 3.289185, 4336.84
lasso2 $model, lambda(1000) lglmnet
assert mreldif(e(b),G) <1e-5
// single lambda, ridge
/*
> r<-glmnet(X,price,alpha=0,lambda=1000,thresh=1e-15)
> t(coef(r))
1 x 11 sparse Matrix of class "dgCMatrix"
[[ suppressing 11 column names ‘(Intercept)’, ‘mpg’, ‘rep78’ ... ]]
s0 3425.776 -57.0062 296.9702 -392.4219 23.70664
s0 0.9938447 5.562674 -24.18045 8.855065 -536.018
s0 1726.658
*/
mat G = -57.0062, 296.9702, -392.4219, 23.70664, 0.9938447, 5.562674, ///
-24.18045, 8.855065, -536.018, 1726.65, 3425.776
lasso2 $model, alpha(0) lambda(1000) lglmnet
assert mreldif(e(b),G) <1e-5
// single lambda, elastic net
/*
> r<-glmnet(X,price,alpha=0.5,lambda=1000,thresh=1e-15)
> t(coef(r))
1 x 11 sparse Matrix of class "dgCMatrix"
[[ suppressing 11 column names ‘(Intercept)’, ‘mpg’, ‘rep78’ ... ]]
s0 2883.129 -5.096381 . . . 0.692915 . . 5.942777 .
s0 308.225
*/
mat G = -5.096381, 0.692915, 5.942777, 308.225, 2883.129
lasso2 $model, alpha(0.5) lambda(1000) lglmnet
assert mreldif(e(b),G) <1e-5
// lasso, lambda grid
/*
> r<-glmnet(X,price,alpha=1,nlambda=5,thres=1e-15)
> r$lambda
[1] 1584.1894208 158.4189421 15.8418942 1.5841894
[5] 0.1584189
> r$dev.ratio
[1] 0.0000000 0.5272556 0.5970093 0.5988338 0.5988521
*/
mat L = 1584.1894208, 158.4189421, 15.8418942, 1.5841894, 0.1584189
mat L = L'
mat D = 0.0000000, 0.5272556, 0.5970093, 0.5988338, 0.5988521
mat D = D'
lasso2 $model, lglmnet lcount(5)
assert mreldif(e(lambdamat0),L) < 1e-5
assert mreldif(e(rsq),D) < 1e-5
// ridge, lambda grid
/*
> r<-glmnet(X,price,alpha=0,nlambda=5,thres=1e-15)
> r$lambda
[1] 1584189.4208 158418.9421 15841.8942 1584.1894
[5] 158.4189
> r$dev.ratio
[1] 2.777378e-36 4.347508e-02 2.060125e-01 4.453574e-01
[5] 5.744210e-01
*/
mat L = 1584189.4208, 158418.9421, 15841.8942, 1584.1894, 158.4189
mat L = L'
// first R-sq of glmnet appears to be wrong - see below
* mat D = 2.777378e-36, 4.347508e-02, 2.060125e-01, 4.453574e-01, 5.744210e-01
* mat D = D'
lasso2 $model, alpha(0) lglmnet lcount(5) long
assert mreldif(e(lambdamat0),L) < 1e-5
* assert mreldif(e(rsq),D) < 1e-5
// single lambda, ridge - see above
/*
> r<-glmnet(X,price,alpha=0,lambda=1584189.4208,thresh=1e-15)
> r$dev.ratio
[1] 0.004941719
*/
lasso2 $model, alpha(0) lglmnet lambda(1584189.4208)
assert reldif(e(r2),0.004941719) < 1e-5
// elastic net, grid of 5
/*
> r<-glmnet(X,price,alpha=0.5,nlambda=5,thresh=1e-15)
> r$lambda
[1] 3168.3788416 316.8378842 31.6837884 3.1683788
[5] 0.3168379
> r$dev.ratio
[1] 0.0000000 0.5088361 0.5942304 0.5987942 0.5988517
*/
mat L = 3168.3788416, 316.8378842, 31.6837884, 3.1683788, 0.3168379
mat L = L'
mat D = 0.0000000, 0.5088361, 0.5942304, 0.5987942, 0.5988517
mat D = D'
lasso2 $model, alpha(0.5) lglmnet lcount(5) long
assert mreldif(e(lambdamat0),L) < 1e-5
assert mreldif(e(rsq),D) < 1e-5
// single lambda, lasso, nocons
/*
> r<-glmnet(X,price,alpha=1,lambda=1000,intercept=FALSE,thresh=1e-15)
> t(coef(r))
1 x 11 sparse Matrix of class "dgCMatrix"
[[ suppressing 11 column names ‘(Intercept)’, ‘mpg’, ‘rep78’ ... ]]
s0 . . . . . 0.379965 26.1441 . . . .
*/
mat G = 0.379965, 26.1441
lasso2 $model, lambda(1000) lglmnet nocons
assert mreldif(e(b),G) <1e-5
// single lambda, lasso, no standardisation
/*
> r<-glmnet(X,price,alpha=1,lambda=1000,standardize=FALSE,thresh=1e-15)
> t(coef(r))
1 x 11 sparse Matrix of class "dgCMatrix"
[[ suppressing 11 column names ‘(Intercept)’, ‘mpg’, ‘rep78’ ... ]]
s0 10119.16 . . . . 3.549222 -62.23642 -106.0307
s0 6.079465 . .
*/
mat G = 3.549222, -62.23642, -106.0307, 6.079465, 10119.16
lasso2 $model, lambda(1000) lglmnet nostd
assert mreldif(e(b),G) <1e-5
// single lambda, lasso, no standardisation, noconstant
/*
> r<-glmnet(X,price,alpha=1,lambda=1000,standardize=FALSE,intercept=FALSE,thresh=1e-15)
> t(coef(r))
1 x 11 sparse Matrix of class "dgCMatrix"
[[ suppressing 11 column names ‘(Intercept)’, ‘mpg’, ‘rep78’ ... ]]
s0 . 6.830147 . . . 1.85882 -2.334519 . 3.886964 . .
*/
mat G = 6.830147, 1.85882, -2.334519, 3.886964
lasso2 $model, lambda(1000) lglmnet nostd nocons
// note looser tolerance
assert mreldif(e(b),G) <1e-4
// single lambda, lasso, mpg and foreign unpenalized
/*
> p.fac = rep(1, 10)
> p.fac[c(1, 10)] = 0
> r<-glmnet(X,price,alpha=1,lambda=500,penalty.factor=p.fac, thresh=1e-15)
> t(coef(r))
1 x 11 sparse Matrix of class "dgCMatrix"
[[ suppressing 11 column names ‘(Intercept)’, ‘mpg’, ‘rep78’ ... ]]
s0 9140.732 -225.1226 . . . . . . 6.065554 . 1962.096
*/
mat G = -225.1226, 6.065554, 1962.096, 9140.732
lasso2 $model, lambda(500) lglmnet notpen(mpg foreign)
assert mreldif(e(b),G) <1e-5
// single lambda, ridge, mpg and foreign unpenalized
/*
> p.fac = rep(1, 10)
> p.fac[c(1, 10)] = 0
> r<-glmnet(X,price,alpha=0,lambda=500,penalty.factor=p.fac, thresh=1e-15)
> t(coef(r))
1 x 11 sparse Matrix of class "dgCMatrix"
[[ suppressing 11 column names ‘(Intercept)’, ‘mpg’, ‘rep78’ ... ]]
s0 4420.934 -65.4987 167.7168 -446.8571 22.46099 1.26494
s0 2.118738 -25.1642 10.62293 -910.106 3185.862
*/
mat G = -65.4987, 167.7168, -446.8571, 22.46099, 1.26494, ///
2.118738, -25.1642, 10.62293, -910.106, 3185.862, 4420.934
lasso2 $model, lambda(500) alpha(0) lglmnet notpen(mpg foreign)
assert mreldif(e(b),G) <1e-5
// single lambda, elastic net, mpg and foreign unpenalized
/*
> p.fac = rep(1, 10)
> p.fac[c(1, 10)] = 0
> r<-glmnet(X,price,alpha=0.5,lambda=500,penalty.factor=p.fac, thresh=1e-15)
> t(coef(r))
1 x 11 sparse Matrix of class "dgCMatrix"
[[ suppressing 11 column names ‘(Intercept)’, ‘mpg’, ‘rep78’ ... ]]
s0 4089.962 -132.7721 . . . 0.7644731 . . 8.896648 . 2639.545
*/
mat G = -132.7721, 0.7644731, 8.896648, 2639.545, 4089.962
lasso2 $model, lambda(500) alpha(0.5) lglmnet notpen(mpg foreign)
assert mreldif(e(b),G) <1e-5
// single lambda, lasso, misc penalty loadings
/*
> p.fac = rep(1, 10)
> p.fac[c(1, 10)] = 4
> p.fac[c(2,9)] = 3
> p.fac[c(3,8)] = 2
> r<-glmnet(X,price,alpha=1,lambda=400,penalty.factor=p.fac, thresh=1e-15)
> t(coef(r))
1 x 11 sparse Matrix of class "dgCMatrix"
[[ suppressing 11 column names ‘(Intercept)’, ‘mpg’, ‘rep78’ ... ]]
s0 1254.559 . . . . 2.136852 . -42.89822 . . 393.3358
*/
mat G = 2.136852, -42.89822, 393.3358, 1254.559
mat psi = 4, 3, 2, 1, 1, 1, 1, 2, 3, 4
lasso2 $model, lambda(400) lglmnet ploadings(psi)
assert mreldif(e(b),G) <1e-5
// Elastic net, single lambda, misc penalty loadings
/*
> p.fac = rep(1, 10)
> p.fac[c(1, 10)] = 4
> p.fac[c(2,9)] = 3
> p.fac[c(3,8)] = 2
> r<-glmnet(X,price,alpha=0.5,lambda=400,penalty.factor=p.fac,thresh=1e-15)
> t(coef(r))
1 x 11 sparse Matrix of class "dgCMatrix"
[[ suppressing 11 column names ‘(Intercept)’, ‘mpg’, ‘rep78’ ... ]]
s0 1232.917 . 91.49722 -256.4055 . 2.29446 . -78.49864 5.61806 .
s0 1398.059
*/
mat G = 91.49722, -256.4055, 2.29446, -78.49864, 5.61806, 1398.059, 1232.917
mat psi = 4, 3, 2, 1, 1, 1, 1, 2, 3, 4
lasso2 $model, lambda(400) alpha(0.5) lglmnet ploadings(psi)
assert mreldif(e(b),G) <1e-5
// Elastic net, single lambda, misc penalty loadings, no standardization
/*
> p.fac = rep(1, 10)
> p.fac[c(1, 10)] = 4
> p.fac[c(2,9)] = 3
> p.fac[c(3,8)] = 2
> r<-glmnet(X,price,alpha=0.5,lambda=400,penalty.factor=p.fac,standardize=FALSE,thresh=1e-15)
> t(coef(r))
1 x 11 sparse Matrix of class "dgCMatrix"
[[ suppressing 11 column names ‘(Intercept)’, ‘mpg’, ‘rep78’ ... ]]
s0 16039.13 -58.51055 322.0282 -218.2771 21.3079 4.093964 -72.31631
s0 -247.7182 8.463531 . .
*/
mat G = -58.51055, 322.0282, -218.2771, 21.3079, 4.093964, -72.31631, ///
-247.7182, 8.463531, 16039.13
mat psi = 4, 3, 2, 1, 1, 1, 1, 2, 3, 4
lasso2 $model, lambda(400) alpha(0.5) lglmnet ploadings(psi) nostd
// note looser tolerance
assert mreldif(e(b),G) <1e-4
********************************************************************************
*** lglmnet option - consistency with lasso2 default parameterization ***
********************************************************************************
* uses auto dataset
* can change sd(y) and lambdas to suit
* note lglmnet implies prestd
// any lambda, any alpha
sysuse auto, clear
gen double y = price/10
local glmnetlambda_a = 100
local glmnetlambda_b = 10
drop if rep78==.
qui sum y
local sd = r(sd) * 1/sqrt( r(N)/(r(N)-1) )
local glmnetalpha = 0.5
local L1lambda_a = `glmnetlambda_a' * 2 * 69
local L2lambda_a = `L1lambda_a' / `sd'
local L1lambda_b = `glmnetlambda_b' * 2 * 69
local L2lambda_b = `L1lambda_b' / `sd'
di "glmnetlambda_a=`glmnetlambda_a' L1lambda_a=`L1lambda_a' L2lambda_a=`L2lambda_a'"
di "glmnetlambda_b=`glmnetlambda_b' L1lambda_b=`L1lambda_b' L2lambda_b=`L2lambda_b'"
// Lasso / alpha=1
lasso2 y mpg-foreign, lambda(`glmnetlambda_a') lglmnet
local objfn = e(objfn)
storedresults save glmnet e()
lasso2 y mpg-foreign, lambda(`L1lambda_a') prestd
storedresults compare glmnet e(), tol(1e-8) ///
exclude(macros: lasso2opt scalar: niter lambda objfn slambda sobjfn)
assert reldif(2*`objfn',e(objfn))<1e-8
// lambda list
lasso2 y mpg-foreign, lambda(`glmnetlambda_a' `glmnetlambda_b') lglmnet
storedresults save glmnet e()
lasso2 y mpg-foreign, lambda(`L1lambda_a' `L1lambda_b') prestd
storedresults compare glmnet e(), tol(1e-8) ///
exclude(macros: lasso2opt ///
scalar: niter lmax lmax0 lmin lmin0 ///
laic laicc lbic lebic slaic slaicc slbic slebic ///
matrix: lambdamat lambdamat0 slambdamat slambdamat0)
// Enet
local alpha=(`glmnetalpha'*`sd')/( (1-`glmnetalpha') + `glmnetalpha'*`sd' )
local lambda_a=(1-`glmnetalpha')*`L2lambda_a' + `glmnetalpha'*`L1lambda_a'
local lambda_b=(1-`glmnetalpha')*`L2lambda_b' + `glmnetalpha'*`L1lambda_b'
di "alpha=`alpha' lambda_a=`lambda_a' lambda_b=`lambda_b'"
lasso2 y mpg-foreign, alpha(`glmnetalpha') lambda(`glmnetlambda_a') lglmnet
local objfn = e(objfn)
storedresults save glmnet e()
lasso2 y mpg-foreign, alpha(`alpha') lambda(`lambda_a') prestd
storedresults compare glmnet e(), tol(1e-8) ///
exclude(macros: lasso2opt scalar: niter alpha lambda objfn slambda sobjfn)
di 2*`objfn'
di e(objfn)
assert reldif(2*`objfn',e(objfn))<1e-8
// lambda list
lasso2 y mpg-foreign, alpha(`glmnetalpha') lambda(`glmnetlambda_a' `glmnetlambda_b') lglmnet
storedresults save glmnet e()
lasso2 y mpg-foreign, alpha(`alpha') lambda(`lambda_a' `lambda_b') prestd
storedresults compare glmnet e(), tol(1e-8) ///
exclude(macros: lasso2opt ///
scalar: niter lmax lmax0 lmin lmin0 ///
laic laicc lbic lebic slaic slaicc slbic slebic alpha ///
matrix: lambdamat lambdamat0 slambdamat slambdamat0)
// Ridge / alpha=0
lasso2 y mpg-foreign, alpha(0) lambda(`glmnetlambda_a') lglmnet
local objfn = e(objfn)
storedresults save glmnet e()
lasso2 y mpg-foreign, alpha(0) lambda(`L2lambda_a') prestd
storedresults compare glmnet e(), tol(1e-8) ///
exclude(macros: lasso2opt scalar: niter lambda objfn slambda sobjfn)
di 2*`objfn'
di e(objfn)
assert reldif(2*`objfn',e(objfn))<1e-8
// lambda list
lasso2 y mpg-foreign, alpha(0) lambda(`glmnetlambda_a' `glmnetlambda_b') lglmnet
storedresults save glmnet e()
lasso2 y mpg-foreign, alpha(0) lambda(`L2lambda_a' `L2lambda_b') prestd
storedresults compare glmnet e(), tol(1e-8) ///
exclude(macros: lasso2opt ///
scalar: niter lmax lmax0 lmin lmin0 ///
laic laicc lbic lebic slaic slaicc slbic slebic ///
matrix: lambdamat lambdamat0 slambdamat slambdamat0)
********************************************************************************
*** Validate ploadings(.) option ***
********************************************************************************
* Default lasso2 behavior is to standardize, either on the fly or in advance.
* Confirm ploadings(.) work correctly by providing SDs of X.
* Behavior should be identical to standardization on-the-fly.
sysuse auto, clear
drop if rep78==.
cap mat drop psi_sd
foreach var of varlist mpg-foreign {
qui sum `var'
mat psi_sd = nullmat(psi_sd) , r(sd) * sqrt( (r(N)-1)/r(N) )
}
// lasso
lasso2 price mpg-foreign, lambda(1000) alpha(1)
storedresults save nopload e()
lasso2 price mpg-foreign, lambda(1000) alpha(1) pload(psi_sd)
storedresults compare nopload e(), tol(1e-8) ///
exclude(macros: lasso2opt)
// ridge
lasso2 price mpg-foreign, lambda(1000) alpha(0)
storedresults save nopload e()
lasso2 price mpg-foreign, lambda(1000) alpha(0) pload(psi_sd)
storedresults compare nopload e(), tol(1e-8) ///
exclude(macros: lasso2opt)
// elastic net
lasso2 price mpg-foreign, lambda(1000) alpha(0.5)
storedresults save nopload e()
lasso2 price mpg-foreign, lambda(1000) alpha(0.5) pload(psi_sd)
storedresults compare nopload e(), tol(1e-8) ///
exclude(macros: lasso2opt)
********************************************************************************
*** Validate adaptive lasso option ***
********************************************************************************
sysuse auto, clear
drop if rep78==.
cap mat drop sdvec
// standardized variables used to get OLS with std coefs
foreach var of varlist price mpg-foreign {
cap drop `var'_sd
qui sum `var', meanonly
qui gen double `var'_sd = `var'-r(mean)
qui sum `var'
qui replace `var'_sd = `var'_sd * 1/r(sd) * sqrt( r(N)/(r(N)-1) )
mat sdvec = nullmat(sdvec), r(sd)/sqrt( r(N)/(r(N)-1) )
}
mat ysd = sdvec[1,1]
mat xsd = sdvec[1,2..11]
// replicate adaptive lasso
// use standardized coefficients + prestd
qui reg price_sd mpg_sd-foreign_sd
mata: st_matrix("psi",1:/abs(st_matrix("e(b)")))
mat psi = psi[1,1..10]
mat psi2 = J(1,10,1)
// lasso
lasso2 price mpg-foreign, lambda(10000) adaptive prestd
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) ploadings(psi) prestd
assert mreldif(b,e(b)) < 1e-7
// elastic net
lasso2 price mpg-foreign, lambda(10000) adaptive prestd alpha(0.5)
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) ploadings(psi) ploadings2(psi2) prestd alpha(0.5)
assert mreldif(b,e(b)) < 1e-7
// using adaloadings option + standardized coefficients + prestd
qui reg price_sd mpg_sd-foreign_sd
mata: st_matrix("psi",st_matrix("e(b)"))
mat psi = psi[1,1..10]
mat psi2 = J(1,10,1)
// lasso
lasso2 price mpg-foreign, lambda(10000) adaptive prestd
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) adaloadings(psi) prestd
assert mreldif(b,e(b)) < 1e-7
// elastic net
lasso2 price mpg-foreign, lambda(10000) adaptive prestd alpha(0.5)
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) adaloadings(psi) prestd alpha(0.5)
assert mreldif(b,e(b)) < 1e-7
// use unstandardized coefficients and no prestandardization
qui reg price mpg-foreign
mata: st_matrix("psi",1:/abs(st_matrix("e(b)")))
// note that psi needs to be rescaled by sd(y) in order for lambda to be the same
mat psi = psi[1,1..10] * ysd[1,1]
mat psi2 = xsd
// lasso
lasso2 price mpg-foreign, lambda(10000) adaptive
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) ploadings(psi)
assert mreldif(b,e(b)) < 1e-7
// elastic net
lasso2 price mpg-foreign, lambda(10000) adaptive alpha(0.5)
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) ploadings(psi) ploadings2(psi2) alpha(0.5)
assert mreldif(b,e(b)) < 1e-7
// use adaloadings option + unstandardized coefficients + no prestandardization
qui reg price mpg-foreign
mata: st_matrix("psi",st_matrix("e(b)"))
// note that psi does NOT need to be rescaled by sd(y) - handled automatically
mat psi = psi[1,1..10]
mat psi2 = xsd
// lasso
lasso2 price mpg-foreign, lambda(10000) adaptive
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) adaloadings(psi)
assert mreldif(b,e(b)) < 1e-7
// elastic net
lasso2 price mpg-foreign, lambda(10000) adaptive alpha(0.5)
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) adaloadings(psi) alpha(0.5)
assert mreldif(b,e(b)) < 1e-7
// confirm prestd and no prestd yield same estimates
// lasso, theta=1
lasso2 price mpg-foreign, lambda(10000) adaptive
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) adaptive prestd
assert mreldif(b,e(b)) < 1e-7
// lasso, theta=2
lasso2 price mpg-foreign, lambda(10000) adaptive adatheta(2)
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) adaptive prestd adatheta(2)
assert mreldif(b,e(b)) < 1e-7
// elastic net
lasso2 price mpg-foreign, lambda(10000) adaptive alpha(0.5) adatheta(2)
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) adaptive prestd alpha(0.5) adatheta(2)
assert mreldif(b,e(b)) < 1e-7
* lglmnet version
* lglmnet standardizes automatically unless overridden by nostd (=unitloadings)
// replicate adaptive lasso with lglmnet and no standardization
// nostd overrides standardization
// use unstandardized coefficients
qui reg price mpg-foreign
mata: st_matrix("psi",1:/abs(st_matrix("e(b)")))
mat psi = psi[1,1..10]
mat psi2 = J(1,10,1)
// lasso
lasso2 price mpg-foreign, lambda(1000) adaptive lglmnet nostd
mat b=e(b)
lasso2 price mpg-foreign, lambda(1000) ploadings(psi) nostd lglmnet
assert mreldif(b,e(b)) < 1e-7
// elastic net
lasso2 price mpg-foreign, lambda(1000) adaptive lglmnet nostd alpha(0.5)
mat b=e(b)
lasso2 price mpg-foreign, lambda(1000) ploadings(psi) ploadings2(psi2) nostd lglmnet alpha(0.5)
assert mreldif(b,e(b)) < 1e-7
// use adaloadings option + unstandardized coefficients + no standardization
qui reg price mpg-foreign
mata: st_matrix("psi",st_matrix("e(b)"))
mat psi = psi[1,1..10]
// lasso
lasso2 price mpg-foreign, lambda(10000) adaptive lglmnet nostd
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) adaloadings(psi) nostd lglmnet
assert mreldif(b,e(b)) < 1e-7
// elastic net
lasso2 price mpg-foreign, lambda(10000) adaptive lglmnet nostd alpha(0.5)
mat b=e(b)
lasso2 price mpg-foreign, lambda(10000) adaloadings(psi) nostd lglmnet alpha(0.5)
assert mreldif(b,e(b)) < 1e-7
// replicate adaptive lasso with lglmnet and standardization
// lglmnet standardizes by default unless overridden by nostd
// use standardized coefficients
// note dep var doesn't have to be standardized
qui reg price mpg_sd-foreign_sd
mata: st_matrix("psi",1:/abs(st_matrix("e(b)")))
mat psi = psi[1,1..10]
mat psi2 = J(1,10,1)
// lasso
lasso2 price mpg-foreign, lambda(1000) adaptive lglmnet
mat b=e(b)
lasso2 price mpg-foreign, lambda(1000) ploadings(psi) lglmnet
assert mreldif(b,e(b)) < 1e-7
// elastic net
lasso2 price mpg-foreign, lambda(1000) adaptive lglmnet alpha(0.5)
mat b=e(b)
lasso2 price mpg-foreign, lambda(1000) ploadings(psi) ploadings2(psi2) lglmnet alpha(0.5)
assert mreldif(b,e(b)) < 1e-7
// use standardized coefficients + adaloadings option
// note dep var doesn't have to be standardized
qui reg price mpg_sd-foreign_sd
mata: st_matrix("psi",st_matrix("e(b)"))
mat psi = psi[1,1..10]
// lasso
lasso2 price mpg-foreign, lambda(1000) adaptive lglmnet
mat b=e(b)
lasso2 price mpg-foreign, lambda(1000) adaloadings(psi) lglmnet
assert mreldif(b,e(b)) < 1e-7
// elastic net
lasso2 price mpg-foreign, lambda(1000) adaptive lglmnet alpha(0.5)
mat b=e(b)
lasso2 price mpg-foreign, lambda(1000) adaloadings(psi) lglmnet alpha(0.5)
assert mreldif(b,e(b)) < 1e-7
********************************************************************************
*** replicate sqrt-lasso Matlab program ***
********************************************************************************
* load example data
insheet using "$prostate", tab clear
global model lpsa lcavol lweight age lbph svi lcp gleason pgg45
// uses the Matlab code "SqrtLassoIterative.m" (available on request)
lasso2 $model, sqrt l(40) unitload
mat a=e(betaAll)
/*
ans =
0.3627
0
0
0
0
0
0
0.0103
1.7383
*/
mat b = (0.3627,0,0,0,0,0,0,0.0103,1.7383)
comparemat a b
lasso2 $model, sqrt l(10) unitload
mat a=e(betaAll)
/*
ans =
0.5771
0.1965
-0.0092
0.0773
0.0685
0
0
0.0063
1.3946
*/
mat b = (0.5771,0.1965,-0.0092,0.0773,0.0685,0,0,0.0063,1.3946)
comparemat a b
lasso2 $model, sqrt l(1) unitload
mat a=e(betaAll)
/*
ans =
0.5610
0.5774
-0.0196
0.0950
0.6700
-0.0766
0.0088
0.0049
0.5259
*/
mat b = (0.5610, 0.5774,-0.0196,0.0950,0.6700,-0.0766,0.0088,0.0049,0.5259)
comparemat a b
********************************************************************************
*** validation using Stata's elasticnet ***
********************************************************************************
// ridge (requires 2 grid points for some reason)
cap noi elasticnet linear $model, alphas(0) grid(2, min(0.25))
lassoselect alpha = 0 lambda = 0.25
lassocoef, display(coef, penalized)
mat b=e(b)
// Stata lambda = 2N*lambda
global L=2*e(N)*0.25
lasso2 $model, lambda($L) alpha(0)
assert mreldif(b,e(b))<1e-7
// lasso
cap noi elasticnet linear $model, alphas(1) grid(1, min(0.25))
lassoselect alpha = 1 lambda = 0.25
lassocoef, display(coef, penalized)
mat b=e(b)
// Stata lambda = 2N*lambda
global L=2*e(N)*0.25
lasso2 $model, lambda($L)
assert mreldif(b,e(b))<1e-7
// elastic net
cap noi elasticnet linear $model, alphas(0.5) grid(1, min(0.25))
lassoselect alpha = 0.5 lambda = 0.25
lassocoef, display(coef, penalized)
mat b=e(b)
// Stata lambda = 2N*lambda
global L=2*e(N)*0.25
lasso2 $model, lambda($L) alpha(0.5)
assert mreldif(b,e(b))<1e-7
********************************************************************************
*** norecover option ***
********************************************************************************
// partial() with constant
lasso2 $model, partial(age) l(50 20 10)
mat A = e(betas)
mat A = A[2,1..9]
lasso2 $model, l(20) partial(age) postall
mat B = e(b)
comparemat A B
lasso2 $model, partial(age) l(50 20 10) nor
mat A = e(betas)
mat A = A[2,1..7]
lasso2 $model, l(20) partial(age) nor postall
mat B = e(b)
comparemat A B
// partial() with constant, unitloadings
lasso2 $model, partial(age) l(50 20 10) unitl
mat A = e(betas)
mat A = A[2,1..9]
lasso2 $model, l(20) partial(age) postall unitl
mat B = e(b)
comparemat A B
lasso2 $model, partial(age) l(50 20 10) nor unitl
mat A = e(betas)
mat A = A[2,1..7]
lasso2 $model, l(20) partial(age) nor postall unitl
mat B = e(b)
comparemat A B
// no partial() w/ constant, unitloadings
lasso2 $model, l(50 20 10) unitl
mat A = e(betas)
mat A = A[2,1..9]
lasso2 $model, l(20) postall unitl
mat B = e(b)
comparemat A B
lasso2 $model, l(50 20 10) nor unitl
mat A = e(betas)
mat A = A[2,1..9]
lasso2 $model, l(20) nor postall unitl
mat B = e(b)
comparemat A B
// no partial() w/o constant, unit loadings
lasso2 $model, l(50 20 10) unitl nocons
mat A = e(betas)
mat A = A[2,1..8]
lasso2 $model, l(20) postall unitl nocons
mat B = e(b)
comparemat A B
lasso2 $model, l(50 20 10) nor unitl nocons
mat A = e(betas)
mat A = A[2,1..8]
lasso2 $model, l(20) nor postall unitl nocons
mat B = e(b)
comparemat A B
********************************************************************************
*** options ***
********************************************************************************
cap lasso2 $model, alpha(0) sqrt
if _rc != 198 {
exit 1
}
*
// should say that lcount/lmax/lminr are being ignored
lasso2 $model, lambda(10) lcount(10)
lasso2 $model, lambda(10) lmax(100)
lasso2 $model, lambda(10) lminr(0.01)
// plotting only supported for lambda list
lasso2 $model, lambda(10) plotpath(lambda)
// incompatible options wrt penalty loadings
cap lasso2 $model, ploadings(abc) adaptive
if _rc != 198 {
exit 1
}
*
cap lasso2 $model, ploadings(abc) adatheta(3)
if _rc != 198 {
exit 1
}
*
// var may not appear in partial() and notpen()
cap lasso2 $model, partial(age svi lcp) notpen(age svi)
if _rc != 198 {
exit 1
}
*
// controls the output and content of e(b)
lasso2 $model, l(20) displayall
lasso2 $model, l(20) postall
mat list e(b)
lasso2 $model, l(20) displayall postall
mat list e(b)
********************************************************************************
*** verify results are the same for scalar lambda vs lambda list ***
********************************************************************************
global lambdalist 150 130 100 80 60 30 10 5 3 1
* lasso
lasso2 $model, l($lambdalist)
mat A = e(betas)
local j=1
foreach i of numlist $lambdalist {
mat a = A[`j',1..9]
lasso2 $model, l(`i')
mat b = e(betaAll)
comparemat a b
local j=`j'+1
}
*
* lasso (w/o constant)
lasso2 $model, l($lambdalist) nocons
mat A = e(betas)
local j=1
foreach i of numlist $lambdalist {
mat a = A[`j',1..8]
lasso2 $model, l(`i') nocons
mat b = e(betaAll)
comparemat a b
local j=`j'+1
}
*
* post-lasso
lasso2 $model, l($lambdalist) ols
mat A = e(betas)
local j=1
foreach i of numlist $lambdalist {
mat a = A[`j',1..9]
lasso2 $model, l(`i')
mat b = e(betaAllOLS)
comparemat a b
local j=`j'+1
}
*
// replaced lambda=40 with lambda=60
// lambda=40 in path used beta=zeros from lambda=100
// as initial beta; would end up at poor solution
global sqrtlambdalist 100 60 20 10 5 1
* sqrt-lasso
lasso2 $model, l($sqrtlambdalist) sqrt
mat A = e(betas)
local j=1
foreach i of numlist $sqrtlambdalist {
mat a = A[`j',1..8]
di `i'
lasso2 $model, l(`i') sqrt
mat b = e(betaAll)
mat b = b[1,1..8]
comparemat a b
local j=`j'+1
}
*
* post-sqrt-lasso ols
lasso2 $model, l($sqrtlambdalist) sqrt ols
mat A = e(betas)
local j=1
foreach i of numlist $sqrtlambdalist {
di "this lambda: `i'"
mat a = A[`j',1..9]
lasso2 $model, l(`i') sqrt ols
mat b = e(betaAllOLS)
comparemat a b
local j=`j'+1
}
*
* ridge
lasso2 $model, l($lambdalist) alpha(0)
mat A = e(betas)
local j=1
foreach i of numlist $lambdalist {
mat a = A[`j',1..9]
lasso2 $model, l(`i') alpha(0)
mat b = e(betaAll)
comparemat a b
local j=`j'+1
}
*
* ols ridge
lasso2 $model, l($lambdalist) alpha(0) ols