22
22
23
23
var bench = require ( '@stdlib/bench' ) ;
24
24
var randu = require ( '@stdlib/random/base/randu' ) ;
25
+ var uniform = require ( '@stdlib/random/base/uniform' ) ;
25
26
var isnan = require ( '@stdlib/math/base/assert/is-nan' ) ;
26
27
var EPS = require ( '@stdlib/constants/float64/eps' ) ;
27
28
var pkg = require ( './../package.json' ) . name ;
@@ -38,8 +39,8 @@ bench( pkg+'::instantiation', function benchmark( bm ) {
38
39
39
40
bm . tic ( ) ;
40
41
for ( i = 0 ; i < bm . iterations ; i ++ ) {
41
- a = ( randu ( ) * 10.0 ) + EPS ;
42
- b = ( randu ( ) * 10.0 ) + a + EPS ;
42
+ a = uniform ( EPS , 10.0 ) ;
43
+ b = uniform ( a + EPS , a + 10.0 + EPS ) ;
43
44
dist = new Arcsine ( a , b ) ;
44
45
if ( ! ( dist instanceof Arcsine ) ) {
45
46
bm . fail ( 'should return a distribution instance' ) ;
@@ -92,7 +93,7 @@ bench( pkg+'::set:a', function benchmark( bm ) {
92
93
93
94
bm . tic ( ) ;
94
95
for ( i = 0 ; i < bm . iterations ; i ++ ) {
95
- y = ( 100.0 * randu ( ) ) + EPS ;
96
+ y = uniform ( EPS , 100.0 + EPS ) ;
96
97
dist . a = y ;
97
98
if ( dist . a !== y ) {
98
99
bm . fail ( 'should return set value' ) ;
@@ -145,7 +146,7 @@ bench( pkg+'::set:b', function benchmark( bm ) {
145
146
146
147
bm . tic ( ) ;
147
148
for ( i = 0 ; i < bm . iterations ; i ++ ) {
148
- y = ( 100.0 * randu ( ) ) + a + EPS ;
149
+ y = uniform ( a + EPS , a + 100.0 + EPS ) ;
149
150
dist . b = y ;
150
151
if ( dist . b !== y ) {
151
152
bm . fail ( 'should return set value' ) ;
@@ -172,7 +173,7 @@ bench( pkg+':entropy', function benchmark( bm ) {
172
173
173
174
bm . tic ( ) ;
174
175
for ( i = 0 ; i < bm . iterations ; i ++ ) {
175
- dist . a = ( 100.0 * randu ( ) ) + EPS ;
176
+ dist . a = uniform ( EPS , 100.0 + EPS ) ;
176
177
y = dist . entropy ;
177
178
if ( isnan ( y ) ) {
178
179
bm . fail ( 'should not return NaN' ) ;
@@ -199,7 +200,7 @@ bench( pkg+':kurtosis', function benchmark( bm ) {
199
200
200
201
bm . tic ( ) ;
201
202
for ( i = 0 ; i < bm . iterations ; i ++ ) {
202
- dist . a = ( 100.0 * randu ( ) ) + EPS ;
203
+ dist . a = uniform ( EPS , 100.0 + EPS ) ;
203
204
y = dist . kurtosis ;
204
205
if ( isnan ( y ) ) {
205
206
bm . fail ( 'should not return NaN' ) ;
@@ -226,7 +227,7 @@ bench( pkg+':mean', function benchmark( bm ) {
226
227
227
228
bm . tic ( ) ;
228
229
for ( i = 0 ; i < bm . iterations ; i ++ ) {
229
- dist . a = ( 100.0 * randu ( ) ) + EPS ;
230
+ dist . a = uniform ( EPS , 100.0 + EPS ) ;
230
231
y = dist . mean ;
231
232
if ( isnan ( y ) ) {
232
233
bm . fail ( 'should not return NaN' ) ;
@@ -253,7 +254,7 @@ bench( pkg+':median', function benchmark( bm ) {
253
254
254
255
bm . tic ( ) ;
255
256
for ( i = 0 ; i < bm . iterations ; i ++ ) {
256
- dist . a = ( 100.0 * randu ( ) ) + EPS ;
257
+ dist . a = uniform ( EPS , 100.0 + EPS ) ;
257
258
y = dist . median ;
258
259
if ( isnan ( y ) ) {
259
260
bm . fail ( 'should not return NaN' ) ;
@@ -280,7 +281,7 @@ bench( pkg+':mode', function benchmark( bm ) {
280
281
281
282
bm . tic ( ) ;
282
283
for ( i = 0 ; i < bm . iterations ; i ++ ) {
283
- dist . a = ( 100.0 * randu ( ) ) + 1 .0 + EPS ;
284
+ dist . a = uniform ( 1.0 + EPS , 101 .0 + EPS ) ;
284
285
y = dist . mode ;
285
286
if ( isnan ( y ) ) {
286
287
bm . fail ( 'should not return NaN' ) ;
@@ -307,7 +308,7 @@ bench( pkg+':skewness', function benchmark( bm ) {
307
308
308
309
bm . tic ( ) ;
309
310
for ( i = 0 ; i < bm . iterations ; i ++ ) {
310
- dist . a = ( 100.0 * randu ( ) ) + EPS ;
311
+ dist . a = uniform ( EPS , 100.0 + EPS ) ;
311
312
y = dist . skewness ;
312
313
if ( isnan ( y ) ) {
313
314
bm . fail ( 'should not return NaN' ) ;
@@ -334,7 +335,7 @@ bench( pkg+':stdev', function benchmark( bm ) {
334
335
335
336
bm . tic ( ) ;
336
337
for ( i = 0 ; i < bm . iterations ; i ++ ) {
337
- dist . a = ( 100.0 * randu ( ) ) + EPS ;
338
+ dist . a = uniform ( EPS , 100.0 + EPS ) ;
338
339
y = dist . stdev ;
339
340
if ( isnan ( y ) ) {
340
341
bm . fail ( 'should not return NaN' ) ;
@@ -361,7 +362,7 @@ bench( pkg+':variance', function benchmark( bm ) {
361
362
362
363
bm . tic ( ) ;
363
364
for ( i = 0 ; i < bm . iterations ; i ++ ) {
364
- dist . a = ( 100.0 * randu ( ) ) + EPS ;
365
+ dist . a = uniform ( EPS , 100.0 + EPS ) ;
365
366
y = dist . variance ;
366
367
if ( isnan ( y ) ) {
367
368
bm . fail ( 'should not return NaN' ) ;
0 commit comments