|
22 | 22 |
|
23 | 23 | import dlacpy = require( '@stdlib/lapack/base/dlacpy' );
|
24 | 24 | import dlaswp = require( '@stdlib/lapack/base/dlaswp' );
|
| 25 | +import dpttrf = require( '@stdlib/lapack/base/dpttrf' ); |
25 | 26 |
|
26 | 27 | /**
|
27 | 28 | * Interface describing the `base` namespace.
|
@@ -94,6 +95,36 @@ interface Namespace {
|
94 | 95 | * // A => <Float64Array>[ 3.0, 4.0, 1.0, 2.0, 5.0, 6.0 ]
|
95 | 96 | */
|
96 | 97 | dlaswp: typeof dlaswp;
|
| 98 | + |
| 99 | + /** |
| 100 | + * Computes the `L * D * L^T` factorization of a real symmetric positive definite tridiagonal matrix `A`. |
| 101 | + * |
| 102 | + * @param N - order of matrix `A` |
| 103 | + * @param D - the `N` diagonal elements of `A` |
| 104 | + * @param E - the `N-1` subdiagonal elements of `A` |
| 105 | + * @returns status code |
| 106 | + * |
| 107 | + * @example |
| 108 | + * var Float64Array = require( '@stdlib/array/float64' ); |
| 109 | + * |
| 110 | + * var D = new Float64Array( [ 4.0, 5.0, 6.0 ] ); |
| 111 | + * var E = new Float64Array( [ 1.0, 2.0 ] ); |
| 112 | + * |
| 113 | + * ns.dpttrf( 3, D, E ); |
| 114 | + * // D => <Float64Array>[ 4, 4.75, ~5.15789 ] |
| 115 | + * // E => <Float64Array>[ 0.25, ~0.4210 ] |
| 116 | + * |
| 117 | + * @example |
| 118 | + * var Float64Array = require( '@stdlib/array/float64' ); |
| 119 | + * |
| 120 | + * var D = new Float64Array( [ 4.0, 5.0, 6.0 ] ); |
| 121 | + * var E = new Float64Array( [ 1.0, 2.0 ] ); |
| 122 | + * |
| 123 | + * ns.dpttrf.ndarray( 3, D, 1, 0, E, 1, 0 ); |
| 124 | + * // D => <Float64Array>[ 4, 4.75, ~5.15789 ] |
| 125 | + * // E => <Float64Array>[ 0.25, ~0.4210 ] |
| 126 | + */ |
| 127 | + dpttrf: typeof dpttrf; |
97 | 128 | }
|
98 | 129 |
|
99 | 130 | /**
|
|
0 commit comments