@@ -133,20 +133,20 @@ var gammaCDF = gamma.cdf.factory( alpha, beta );
133
133
var cdf = filledarrayby ( x .length , ' float64' , gammaCDF );
134
134
135
135
// Output the PDF and CDF values:
136
- console .log ( ' x values:' , x );
137
- console .log ( ' PDF values:' , pdf );
138
- console .log ( ' CDF values:' , cdf );
136
+ console .log ( ' x values: %s ' , x );
137
+ console .log ( ' PDF values: %s ' , pdf );
138
+ console .log ( ' CDF values: %s ' , cdf );
139
139
140
140
// Compute statistical properties:
141
141
var theoreticalMean = gamma .mean ( alpha, beta );
142
142
var theoreticalVariance = gamma .variance ( alpha, beta );
143
143
var theoreticalSkewness = gamma .skewness ( alpha, beta );
144
144
var theoreticalKurtosis = gamma .kurtosis ( alpha, beta );
145
145
146
- console .log ( ' Theoretical Mean:' , theoreticalMean );
147
- console .log ( ' Theoretical Variance:' , theoreticalVariance );
148
- console .log ( ' Skewness:' , theoreticalSkewness );
149
- console .log ( ' Kurtosis:' , theoreticalKurtosis );
146
+ console .log ( ' Theoretical Mean: %s ' , theoreticalMean );
147
+ console .log ( ' Theoretical Variance: %s ' , theoreticalVariance );
148
+ console .log ( ' Skewness: %s ' , theoreticalSkewness );
149
+ console .log ( ' Kurtosis: %s ' , theoreticalKurtosis );
150
150
151
151
// Generate random samples from the gamma distribution:
152
152
var rgamma = gammaRandomFactory ( alpha, beta );
@@ -157,12 +157,12 @@ var samples = filledarrayby( n, 'float64', rgamma );
157
157
var sampleMean = mean ( n, samples, 1 );
158
158
var sampleVariance = variance ( n, 1 , samples, 1 );
159
159
160
- console .log ( ' Sample Mean:' , sampleMean );
161
- console .log ( ' Sample Variance:' , sampleVariance );
160
+ console .log ( ' Sample Mean: %s ' , sampleMean );
161
+ console .log ( ' Sample Variance: %s ' , sampleVariance );
162
162
163
163
// Compare sample statistics to theoretical values:
164
- console .log ( ' Difference in Mean:' , abs ( theoreticalMean - sampleMean ) );
165
- console .log ( ' Difference in Variance:' , abs ( theoreticalVariance - sampleVariance ) );
164
+ console .log ( ' Difference in Mean: %s ' , abs ( theoreticalMean - sampleMean ) );
165
+ console .log ( ' Difference in Variance: %s ' , abs ( theoreticalVariance - sampleVariance ) );
166
166
167
167
// Demonstrate that the sum of `k` gamma variables is a gamma-distributed sum of `k` gamma(α, β) variables with same β is `gamma(k*α, β)`:
168
168
var k = 5 ;
@@ -184,15 +184,15 @@ var sumAlpha = k * alpha;
184
184
var sumMean = gamma .mean ( sumAlpha, beta );
185
185
var sumVariance = gamma .variance ( sumAlpha, beta );
186
186
187
- console .log ( ' Sum Theoretical Mean:' , sumMean );
188
- console .log ( ' Sum Theoretical Variance:' , sumVariance );
187
+ console .log ( ' Sum Theoretical Mean: %s ' , sumMean );
188
+ console .log ( ' Sum Theoretical Variance: %s ' , sumVariance );
189
189
190
190
// Compute sample mean and variance for the sum:
191
191
var sumSampleMean = mean ( sumSamples .length , sumSamples, 1 );
192
192
var sumSampleVariance = variance ( sumSamples .length , 1 , sumSamples, 1 );
193
193
194
- console .log ( ' Sum Sample Mean:' , sumSampleMean );
195
- console .log ( ' Sum Sample Variance:' , sumSampleVariance );
194
+ console .log ( ' Sum Sample Mean: %s ' , sumSampleMean );
195
+ console .log ( ' Sum Sample Variance: %s ' , sumSampleVariance );
196
196
```
197
197
198
198
</section >
0 commit comments