From 7e8a907a3a6f72da5bf8560a99b38c9d1e63b39c Mon Sep 17 00:00:00 2001 From: GUNJ JOSHI Date: Fri, 31 May 2024 17:38:10 +0530 Subject: [PATCH 01/28] feat: draft commit --- .../math/base/special/rempio2/README.md | 91 +++ .../rempio2/benchmark/benchmark.native.js | 63 +++ .../rempio2/benchmark/c/native/Makefile | 146 +++++ .../rempio2/benchmark/c/native/benchmark.c | 138 +++++ .../math/base/special/rempio2/binding.gyp | 170 ++++++ .../base/special/rempio2/examples/c/Makefile | 146 +++++ .../base/special/rempio2/examples/c/example.c | 33 ++ .../math/base/special/rempio2/include.gypi | 53 ++ .../stdlib/math/base/special/rempio2.h | 41 ++ .../math/base/special/rempio2/lib/native.js | 56 ++ .../math/base/special/rempio2/manifest.json | 86 +++ .../math/base/special/rempio2/src/Makefile | 70 +++ .../math/base/special/rempio2/src/addon.c | 119 ++++ .../math/base/special/rempio2/src/main.c | 530 ++++++++++++++++++ .../base/special/rempio2/test/test.native.js | 281 ++++++++++ 15 files changed, 2023 insertions(+) create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/benchmark/benchmark.native.js create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/benchmark/c/native/Makefile create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/benchmark/c/native/benchmark.c create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/binding.gyp create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/examples/c/Makefile create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/examples/c/example.c create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/include.gypi create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/include/stdlib/math/base/special/rempio2.h create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/lib/native.js create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/manifest.json create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/src/Makefile create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/src/addon.c create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c create mode 100644 lib/node_modules/@stdlib/math/base/special/rempio2/test/test.native.js diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/README.md b/lib/node_modules/@stdlib/math/base/special/rempio2/README.md index 32551ba1d644..8c32bb0e53c5 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/README.md +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/README.md @@ -111,6 +111,97 @@ for ( i = 0; i < x.length; i++ ) { + + +* * * + +
+ +## C APIs + + + +
+ +
+ + + + + +
+ +### Usage + +```c +#include "stdlib/math/base/special/rempio2.h" +``` + +#### stdlib_base_rempio2( x, &rem1, &rem2 ) + +Computes `x - nπ/2 = r`. The function returns `n` and stores the remainder `r` as two numbers in `y`, such that `y[0]+y[1] = r`. + +```c +double rem1; +double rem2; + +stdlib_base_rempio2( 4.0, &rem1, &rem2 ); +``` + +The function accepts the following arguments: + +- **x**: `[in] double` input value. +- **rem1**: `[out] double*` destination for rem1. +- **rem2**: `[out] double*` destination for rem2. + +```c +void stdlib_base_rempio2( const double x, double *rem1, double *rem2 ); +``` + +
+ + + + + +
+ +
+ + + + + +
+ +### Examples + +```c +#include "stdlib/math/base/special/rempio2.h" +#include + +int main( void ) { + const double x[] = { 0.0, 1.0, 4.0, 128.0 }; + + double rem1; + double rem2; + double n; + int i; + for ( i = 0; i < 4; i++ ) { + stdlib_base_rempio2( x[ i ], &rem1, &rem2 ); + printf( "%lf - %lfπ/2 = %lf + %lf", x[ i ], n, rem1, rem2 ); + } +} +``` + +
+ + + +
+ + + @@ -139,23 +140,25 @@ for ( i = 0; i < x.length; i++ ) { #### stdlib_base_rempio2( x, &rem1, &rem2 ) -Computes `x - nπ/2 = r`. The function returns `n` and stores the remainder `r` as two numbers in `y`, such that `y[0]+y[1] = r`. +Computes `x - nπ/2 = r`. ```c +#include + double rem1; double rem2; -stdlib_base_rempio2( 4.0, &rem1, &rem2 ); +int32_t n = stdlib_base_rempio2( 4.0, &rem1, &rem2 ); ``` The function accepts the following arguments: - **x**: `[in] double` input value. -- **rem1**: `[out] double*` destination for rem1. -- **rem2**: `[out] double*` destination for rem2. +- **rem1**: `[out] double*` destination for first remainder number. +- **rem2**: `[out] double*` destination for second remainder number. ```c -void stdlib_base_rempio2( const double x, double *rem1, double *rem2 ); +int32_t stdlib_base_rempio2( const double x, double *rem1, double *rem2 ); ``` @@ -166,6 +169,10 @@ void stdlib_base_rempio2( const double x, double *rem1, double *rem2 );
+### Notes + +- The function returns `n` and stores the remainder `r` as two numbers in `rem1` and `rem2`, respectively, such that `rem1+rem2 = r`. +
@@ -179,17 +186,19 @@ void stdlib_base_rempio2( const double x, double *rem1, double *rem2 ); ```c #include "stdlib/math/base/special/rempio2.h" #include +#include +#include int main( void ) { const double x[] = { 0.0, 1.0, 4.0, 128.0 }; double rem1; double rem2; - double n; + int32_t n; int i; for ( i = 0; i < 4; i++ ) { - stdlib_base_rempio2( x[ i ], &rem1, &rem2 ); - printf( "%lf - %lfπ/2 = %lf + %lf", x[ i ], n, rem1, rem2 ); + n = stdlib_base_rempio2( x[ i ], &rem1, &rem2 ); + printf( "%lf - %"PRId32"π/2 = %lf + %lf\n", x[ i ], n, rem1, rem2 ); } } ``` diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/examples/c/example.c b/lib/node_modules/@stdlib/math/base/special/rempio2/examples/c/example.c index 8286358afd0a..4b314d364054 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/examples/c/example.c +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/examples/c/example.c @@ -18,16 +18,18 @@ #include "stdlib/math/base/special/rempio2.h" #include +#include +#include int main( void ) { const double x[] = { 0.0, 1.0, 4.0, 128.0 }; double rem1; double rem2; - double n; + int32_t n; int i; for ( i = 0; i < 4; i++ ) { n = stdlib_base_rempio2( x[ i ], &rem1, &rem2 ); - printf( "%lf - %lfπ/2 = %lf + %lf", x[ i ], n, rem1, rem2 ); + printf( "%lf - %"PRId32"π/2 = %lf + %lf\n", x[ i ], n, rem1, rem2 ); } } diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/include/stdlib/math/base/special/rempio2.h b/lib/node_modules/@stdlib/math/base/special/rempio2/include/stdlib/math/base/special/rempio2.h index 26badf607591..dcba0ab4172a 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/include/stdlib/math/base/special/rempio2.h +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/include/stdlib/math/base/special/rempio2.h @@ -34,7 +34,7 @@ extern "C" { /** * Computes `x - nπ/2 = r`. */ -double stdlib_base_rempio2( const double x, double* rem1, double* rem2 ); +int32_t stdlib_base_rempio2( const double x, double *rem1, double *rem2 ); #ifdef __cplusplus } diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/lib/native.js b/lib/node_modules/@stdlib/math/base/special/rempio2/lib/native.js index 8f18bc0ba69b..ab9ea199ea87 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/lib/native.js +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/lib/native.js @@ -20,7 +20,6 @@ // MODULES // -var Float64Array = require( '@stdlib/array/float64' ); var addon = require( './../src/addon.node' ); @@ -31,11 +30,13 @@ var addon = require( './../src/addon.node' ); * * @private * @param {number} x - input value -* @param {(Array|TypedArray|Object)} y - remainder elements +* @param {Float64Array} y - remainder elements * @returns {integer} factor of `π/2` * * @example -* var y = [ 0.0, 0.0 ]; +* var Float64Array = require( '@stdlib/array/float64' ); +* +* var y = new Float64Array( [ 0.0, 0.0 ] ); * var n = rempio2( 128.0, y ); * // returns 81 * @@ -45,9 +46,8 @@ var addon = require( './../src/addon.node' ); * var y2 = y[ 1 ]; * // returns ~3.618e-17 */ -function rempio2( x ) { - var out = new Float64Array( 2 ); - return addon( out, x ); +function rempio2( x, y ) { + return addon( x, y ); } diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/manifest.json b/lib/node_modules/@stdlib/math/base/special/rempio2/manifest.json index 3d071ae81bb3..11524178fb99 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/manifest.json +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/manifest.json @@ -1,86 +1,100 @@ { - "options": { - "task": "build" - }, - "fields": [ - { - "field": "src", - "resolve": true, - "relative": true - }, - { - "field": "include", - "resolve": true, - "relative": true - }, - { - "field": "libraries", - "resolve": false, - "relative": false - }, - { - "field": "libpath", - "resolve": true, - "relative": false - } - ], - "confs": [ - { - "task": "build", - "src": [ - "./src/main.c" - ], - "include": [ - "./include" - ], - "libraries": [], - "libpath": [], - "dependencies": [ - "@stdlib/math/base/special/round", - "@stdlib/math/base/special/floor", - "@stdlib/math/base/special/ldexp", - "@stdlib/number/float64/base/get-high-word", - "@stdlib/number/float64/base/get-low-word", - "@stdlib/number/float64/base/from-words" - ] - }, - { - "task": "benchmark", - "src": [ - "./src/main.c" - ], - "include": [ - "./include" - ], - "libraries": [], - "libpath": [], - "dependencies": [ - "@stdlib/math/base/special/round", - "@stdlib/math/base/special/floor", - "@stdlib/math/base/special/ldexp", - "@stdlib/number/float64/base/get-high-word", - "@stdlib/number/float64/base/get-low-word", - "@stdlib/number/float64/base/from-words" - ] - }, - { - "task": "examples", - "src": [ - "./src/main.c" - ], - "include": [ - "./include" - ], - "libraries": [], - "libpath": [], - "dependencies": [ - "@stdlib/math/base/special/round", - "@stdlib/math/base/special/floor", - "@stdlib/math/base/special/ldexp", - "@stdlib/number/float64/base/get-high-word", - "@stdlib/number/float64/base/get-low-word", - "@stdlib/number/float64/base/from-words" - ] - } - ] + "options": { + "task": "build" + }, + "fields": [ + { + "field": "src", + "resolve": true, + "relative": true + }, + { + "field": "include", + "resolve": true, + "relative": true + }, + { + "field": "libraries", + "resolve": false, + "relative": false + }, + { + "field": "libpath", + "resolve": true, + "relative": false + } + ], + "confs": [ + { + "task": "build", + "src": [ + "./src/main.c" + ], + "include": [ + "./include" + ], + "libraries": [], + "libpath": [], + "dependencies": [ + "@stdlib/napi/argv", + "@stdlib/napi/argv-double", + "@stdlib/napi/argv-float64array", + "@stdlib/napi/create-double", + "@stdlib/napi/export", + "@stdlib/math/base/special/round", + "@stdlib/math/base/special/floor", + "@stdlib/math/base/special/ldexp", + "@stdlib/number/float64/base/get-high-word", + "@stdlib/number/float64/base/get-low-word", + "@stdlib/number/float64/base/from-words", + "@stdlib/constants/float64/high-word-abs-mask", + "@stdlib/constants/float64/high-word-exponent-mask", + "@stdlib/constants/float64/high-word-sign-mask" + ] + }, + { + "task": "benchmark", + "src": [ + "./src/main.c" + ], + "include": [ + "./include" + ], + "libraries": [], + "libpath": [], + "dependencies": [ + "@stdlib/math/base/special/round", + "@stdlib/math/base/special/floor", + "@stdlib/math/base/special/ldexp", + "@stdlib/number/float64/base/get-high-word", + "@stdlib/number/float64/base/get-low-word", + "@stdlib/number/float64/base/from-words", + "@stdlib/constants/float64/high-word-abs-mask", + "@stdlib/constants/float64/high-word-exponent-mask", + "@stdlib/constants/float64/high-word-sign-mask" + ] + }, + { + "task": "examples", + "src": [ + "./src/main.c" + ], + "include": [ + "./include" + ], + "libraries": [], + "libpath": [], + "dependencies": [ + "@stdlib/math/base/special/round", + "@stdlib/math/base/special/floor", + "@stdlib/math/base/special/ldexp", + "@stdlib/number/float64/base/get-high-word", + "@stdlib/number/float64/base/get-low-word", + "@stdlib/number/float64/base/from-words", + "@stdlib/constants/float64/high-word-abs-mask", + "@stdlib/constants/float64/high-word-exponent-mask", + "@stdlib/constants/float64/high-word-sign-mask" + ] + } + ] } diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/src/addon.c b/lib/node_modules/@stdlib/math/base/special/rempio2/src/addon.c index 6787d85bdca8..daf621386400 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/src/addon.c +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/src/addon.c @@ -17,9 +17,12 @@ */ #include "stdlib/math/base/special/rempio2.h" +#include "stdlib/napi/argv.h" +#include "stdlib/napi/argv_double.h" +#include "stdlib/napi/argv_float64array.h" +#include "stdlib/napi/create_double.h" +#include "stdlib/napi/export.h" #include -#include -#include /** * Receives JavaScript callback invocation data. @@ -30,90 +33,11 @@ * @return Node-API value */ static napi_value addon( napi_env env, napi_callback_info info ) { - napi_status status; - - // Get callback arguments: - size_t argc = 2; - napi_value argv[ 2 ]; - status = napi_get_cb_info( env, info, &argc, argv, NULL, NULL ); - assert( status == napi_ok ); - - // Check whether we were provided the correct number of arguments: - if ( argc < 2 ) { - status = napi_throw_error( env, NULL, "invalid invocation. Insufficient arguments." ); - assert( status == napi_ok ); - return NULL; - } - if ( argc > 2 ) { - status = napi_throw_error( env, NULL, "invalid invocation. Too many arguments." ); - assert( status == napi_ok ); - return NULL; - } - - bool res; - status = napi_is_typedarray( env, argv[ 0 ], &res ); - assert( status == napi_ok ); - if ( res == false ) { - status = napi_throw_type_error( env, NULL, "invalid argument. First argument must be a Float64Array." ); - assert( status == napi_ok ); - return NULL; - } - - napi_valuetype vtype1; - status = napi_typeof( env, argv[ 1 ], &vtype1 ); - assert( status == napi_ok ); - if ( vtype1 != napi_number ) { - status = napi_throw_type_error( env, NULL, "invalid argument. Second argument must be a number." ); - assert( status == napi_ok ); - return NULL; - } - - napi_typedarray_type vtype0; - size_t len; - void *Out; - status = napi_get_typedarray_info( env, argv[ 0 ], &vtype0, &len, &Out, NULL, NULL ); - assert( status == napi_ok ); - if ( vtype0 != napi_float64_array ) { - status = napi_throw_type_error( env, NULL, "invalid argument. First argument must be a Float64Array." ); - assert( status == napi_ok ); - return NULL; - } - if ( len != 2 ) { - status = napi_throw_range_error( env, NULL, "invalid argument. First argument must have 2 elements." ); - assert( status == napi_ok ); - return NULL; - } - - double value; - status = napi_get_value_double( env, argv[ 1 ], &value ); - assert( status == napi_ok ); - - double rem1; - double rem2; - napi_value v; - status = napi_create_double( env, stdlib_base_rempio2( value, &rem1, &rem2 ), &v ); - assert( status == napi_ok ); - - double *op = (double *)Out; - op[ 0 ] = rem1; - op[ 1 ] = rem2; - - return v; -} - -/** -* Initializes a Node-API module. -* -* @private -* @param env environment under which the function is invoked -* @param exports exports object -* @return main export -*/ -static napi_value init( napi_env env, napi_value exports ) { - napi_value fcn; - napi_status status = napi_create_function( env, "exports", NAPI_AUTO_LENGTH, addon, NULL, &fcn ); - assert( status == napi_ok ); - return fcn; + STDLIB_NAPI_ARGV( env, info, argv, argc, 2 ); + STDLIB_NAPI_ARGV_DOUBLE( env, x, argv, 0 ); + STDLIB_NAPI_ARGV_FLOAT64ARRAY( env, y, ylen, argv, 1 ); + STDLIB_NAPI_CREATE_DOUBLE( env, stdlib_base_rempio2( x, &y[0], &y[1] ), n ); + return n; } -NAPI_MODULE( NODE_GYP_MODULE_NAME, init ) +STDLIB_NAPI_MODULE_EXPORT_FCN( addon ) diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c index 227fb894ae16..3b938164f352 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c @@ -32,11 +32,11 @@ #include "stdlib/math/base/special/rempio2.h" #include "stdlib/math/base/special/round.h" +#include "stdlib/math/base/special/floor.h" +#include "stdlib/math/base/special/ldexp.h" #include "stdlib/number/float64/base/get_high_word.h" #include "stdlib/number/float64/base/get_low_word.h" #include "stdlib/number/float64/base/from_words.h" -#include "stdlib/math/base/special/floor.h" -#include "stdlib/math/base/special/ldexp.h" #include "stdlib/constants/float64/high_word_abs_mask.h" #include "stdlib/constants/float64/high_word_exponent_mask.h" #include "stdlib/constants/float64/high_word_sign_mask.h" @@ -139,8 +139,9 @@ int32_t IQ[ 20 ]; * @param rem2 remainder element 2 * @param e0 the exponent of `x[0]` (must be <= 16360) * @param nx dimension of `x[]` +* @return last 3 binary digits */ -double rempio2Kernel( const double* x, double* y, int32_t e0, int32_t nx ) { +int32_t rempio2Kernel( const double* x, double *y, int32_t e0, int32_t nx ) { int32_t carry; int32_t jz; int32_t jx; @@ -350,15 +351,16 @@ double rempio2Kernel( const double* x, double* y, int32_t e0, int32_t nx ) { * @param x input value * @param rem1 remainder element 1 * @param rem2 remainder element 2 +* @return factor of `π/2` * * @example -* double x = 128.0; +* #include * * double rem1; * double rem2; -* stdlib_base_rempio2( x, &rem1, &rem2 ); +* int32_t n = stdlib_base_rempio2( 128.0, &rem1, &rem2 ); */ -double stdlib_base_rempio2( const double x, double* rem1, double* rem2 ) { +int32_t stdlib_base_rempio2( const double x, double *rem1, double *rem2 ) { uint32_t uhigh; uint32_t ulow; uint32_t uhx; diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/test/test.js b/lib/node_modules/@stdlib/math/base/special/rempio2/test/test.js index 5ff347e0d64b..8db709e784e3 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/test/test.js +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/test/test.js @@ -48,24 +48,24 @@ tape( 'main export is a function', function test( t ) { tape( 'the function returns `0` and sets the elements of `y` to `NaN` if provided `NaN`', function test( t ) { var y = [ 0.0, 0.0 ]; var n = rempio2( NaN, y ); - t.strictEqual( n, 0.0, 'returns 0' ); - t.strictEqual( isnan( y[0] ), true, 'sets y[0] to NaN' ); - t.strictEqual( isnan( y[1] ), true, 'sets y[1] to NaN' ); + t.strictEqual( n, 0.0, 'returns expected value' ); + t.strictEqual( isnan( y[0] ), true, 'returns expected value' ); + t.strictEqual( isnan( y[1] ), true, 'returns expected value' ); t.end(); }); tape( 'the function returns `0` and sets the elements of `y` to `NaN` if provided positive or negative infinity', function test( t ) { var y = [ 0.0, 0.0 ]; var n = rempio2( PINF, y ); - t.strictEqual( n, 0.0, 'returns 0' ); - t.strictEqual( isnan( y[0] ), true, 'sets y[0] to NaN' ); - t.strictEqual( isnan( y[1] ), true, 'sets y[1] to NaN' ); + t.strictEqual( n, 0.0, 'returns expected value' ); + t.strictEqual( isnan( y[0] ), true, 'returns expected value' ); + t.strictEqual( isnan( y[1] ), true, 'returns expected value' ); y = [ 0.0, 0.0 ]; n = rempio2( NINF, y ); - t.strictEqual( n, 0.0, 'returns 0' ); - t.strictEqual( isnan( y[0] ), true, 'sets y[0] to NaN' ); - t.strictEqual( isnan( y[1] ), true, 'sets y[1] to NaN' ); + t.strictEqual( n, 0.0, 'returns expected value' ); + t.strictEqual( isnan( y[0] ), true, 'returns expected value' ); + t.strictEqual( isnan( y[1] ), true, 'returns expected value' ); t.end(); }); @@ -83,14 +83,14 @@ tape( 'the function returns `n` and stores `r` as two double-precision floating x = randu()*100.0; n = rempio2( x, y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); z = ( PIO2*n ) + ( y[0]+y[1] ); delta = abs( z - x ); tol = EPS * abs( x ); - t.strictEqual( delta <= tol, true, 'can recover input value' ); + t.strictEqual( delta <= tol, true, 'returns expected value' ); } t.end(); }); @@ -109,14 +109,14 @@ tape( 'the function returns `n` and stores `r` as two double-precision floating x = randu()*1.0e-100; n = rempio2( x, y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); z = ( PIO2*n ) + ( y[0]+y[1] ); delta = abs( z - x ); tol = EPS * abs( x ); - t.strictEqual( delta <= tol, true, 'can recover input value' ); + t.strictEqual( delta <= tol, true, 'returns expected value' ); } t.end(); }); @@ -135,14 +135,14 @@ tape( 'the function returns `n` and stores `r` as two double-precision floating x = -100.0 * randu(); n = rempio2( x, y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); z = ( PIO2*n ) + ( y[0]+y[1] ); delta = abs( z - x ); tol = EPS * abs( x ); - t.strictEqual( delta <= tol, true, 'can recover input value' ); + t.strictEqual( delta <= tol, true, 'returns expected value' ); } t.end(); }); @@ -161,14 +161,14 @@ tape( 'the function returns `n` and stores `r` as two double-precision floating x = -1.0e-100 * randu(); n = rempio2( x, y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); z = ( PIO2*n ) + ( y[0]+y[1] ); delta = abs( z - x ); tol = EPS * abs( x ); - t.strictEqual( delta <= tol, true, 'can recover input value' ); + t.strictEqual( delta <= tol, true, 'returns expected value' ); } t.end(); }); @@ -187,14 +187,14 @@ tape( 'the function returns `n` and stores `r` as two double-precision floating for ( i = 0; i < x.length; i++ ) { n = rempio2( x[i], y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); z = ( PIO2*n ) + ( y[0]+y[1] ); delta = abs( z - x[i] ); tol = EPS * abs( x[i] ); - t.strictEqual( delta <= tol, true, 'can recover input value' ); + t.strictEqual( delta <= tol, true, 'returns expected value' ); } t.end(); }); @@ -209,10 +209,10 @@ tape( 'for large positive input values, the function returns the last three bina y = [ 0.0, 0.0 ]; for ( i = 0; i < x.length; i++ ) { n = rempio2( x[i], y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); - t.strictEqual( n < 8, true, 'returns a value smaller than 8' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); + t.strictEqual( n < 8, true, 'returns expected value' ); } t.end(); }); @@ -227,10 +227,10 @@ tape( 'for large negative input values, the function returns the last three bina y = [ 0.0, 0.0 ]; for ( i = 0; i < x.length; i++ ) { n = rempio2( x[i], y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); - t.strictEqual( n < 8, true, 'returns a value smaller than 8' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); + t.strictEqual( n < 8, true, 'returns expected value' ); } t.end(); }); @@ -245,10 +245,10 @@ tape( 'for huge positive input values, the function returns the last three binar y = [ 0.0, 0.0 ]; for ( i = 0; i < x.length; i++ ) { n = rempio2( x[i], y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); - t.strictEqual( n < 8, true, 'returns a value smaller than 8' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); + t.strictEqual( n < 8, true, 'returns expected value' ); } t.end(); }); @@ -263,10 +263,10 @@ tape( 'for huge negative input values, the function returns the last three binar y = [ 0.0, 0.0 ]; for ( i = 0; i < x.length; i++ ) { n = rempio2( x[i], y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); - t.strictEqual( n < 8, true, 'returns a value smaller than 8' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); + t.strictEqual( n < 8, true, 'returns expected value' ); } t.end(); }); diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/test/test.native.js b/lib/node_modules/@stdlib/math/base/special/rempio2/test/test.native.js index 42592a240311..3835d343de47 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/test/test.native.js +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/test/test.native.js @@ -35,6 +35,7 @@ var NINF = require( '@stdlib/constants/float64/ninf' ); var EPS = require( '@stdlib/constants/float64/eps' ); var PIO2 = require( '@stdlib/constants/float64/half-pi' ); var PIO4 = require( '@stdlib/constants/float64/fourth-pi' ); +var Float64Array = require( '@stdlib/array/float64' ); var tryRequire = require( '@stdlib/utils/try-require' ); @@ -55,26 +56,26 @@ tape( 'main export is a function', opts, function test( t ) { }); tape( 'the function returns `0` and sets the elements of `y` to `NaN` if provided `NaN`', opts, function test( t ) { - var y = [ 0.0, 0.0 ]; + var y = new Float64Array( [ 0.0, 0.0 ] ); var n = rempio2( NaN, y ); - t.strictEqual( n, 0.0, 'returns 0' ); - t.strictEqual( isnan( y[0] ), true, 'sets y[0] to NaN' ); - t.strictEqual( isnan( y[1] ), true, 'sets y[1] to NaN' ); + t.strictEqual( n, 0.0, 'returns expected value' ); + t.strictEqual( isnan( y[0] ), true, 'returns expected value' ); + t.strictEqual( isnan( y[1] ), true, 'returns expected value' ); t.end(); }); tape( 'the function returns `0` and sets the elements of `y` to `NaN` if provided positive or negative infinity', opts, function test( t ) { - var y = [ 0.0, 0.0 ]; + var y = new Float64Array( [ 0.0, 0.0 ] ); var n = rempio2( PINF, y ); - t.strictEqual( n, 0.0, 'returns 0' ); - t.strictEqual( isnan( y[0] ), true, 'sets y[0] to NaN' ); - t.strictEqual( isnan( y[1] ), true, 'sets y[1] to NaN' ); + t.strictEqual( n, 0.0, 'returns expected value' ); + t.strictEqual( isnan( y[0] ), true, 'returns expected value' ); + t.strictEqual( isnan( y[1] ), true, 'returns expected value' ); - y = [ 0.0, 0.0 ]; + y = new Float64Array( [ 0.0, 0.0 ] ); n = rempio2( NINF, y ); - t.strictEqual( n, 0.0, 'returns 0' ); - t.strictEqual( isnan( y[0] ), true, 'sets y[0] to NaN' ); - t.strictEqual( isnan( y[1] ), true, 'sets y[1] to NaN' ); + t.strictEqual( n, 0.0, 'returns expected value' ); + t.strictEqual( isnan( y[0] ), true, 'returns expected value' ); + t.strictEqual( isnan( y[1] ), true, 'returns expected value' ); t.end(); }); @@ -87,14 +88,14 @@ tape( 'the function returns `n` and stores `r` as two double-precision floating var n; var i; - y = [ 0.0, 0.0 ]; + y = new Float64Array( [ 0.0, 0.0 ] ); for ( i = 0; i < 200; i++ ) { x = randu()*100.0; n = rempio2( x, y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); z = ( PIO2*n ) + ( y[0]+y[1] ); delta = abs( z - x ); @@ -113,14 +114,14 @@ tape( 'the function returns `n` and stores `r` as two double-precision floating var n; var i; - y = [ 0.0, 0.0 ]; + y = new Float64Array( [ 0.0, 0.0 ] ); for ( i = 0; i < 200; i++ ) { x = randu()*1.0e-100; n = rempio2( x, y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); z = ( PIO2*n ) + ( y[0]+y[1] ); delta = abs( z - x ); @@ -139,14 +140,14 @@ tape( 'the function returns `n` and stores `r` as two double-precision floating var n; var i; - y = [ 0.0, 0.0 ]; + y = new Float64Array( [ 0.0, 0.0 ] ); for ( i = 0; i < 200; i++ ) { x = -100.0 * randu(); n = rempio2( x, y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); z = ( PIO2*n ) + ( y[0]+y[1] ); delta = abs( z - x ); @@ -165,14 +166,14 @@ tape( 'the function returns `n` and stores `r` as two double-precision floating var n; var i; - y = [ 0.0, 0.0 ]; + y = new Float64Array( [ 0.0, 0.0 ] ); for ( i = 0; i < 200; i++ ) { x = -1.0e-100 * randu(); n = rempio2( x, y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); z = ( PIO2*n ) + ( y[0]+y[1] ); delta = abs( z - x ); @@ -192,13 +193,13 @@ tape( 'the function returns `n` and stores `r` as two double-precision floating var i; x = incrspace( -10.0*PIO4, 10.0*PIO4, PIO4 ); - y = [ 0.0, 0.0 ]; + y = new Float64Array( [ 0.0, 0.0 ] ); for ( i = 0; i < x.length; i++ ) { n = rempio2( x[i], y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); z = ( PIO2*n ) + ( y[0]+y[1] ); delta = abs( z - x[i] ); @@ -215,13 +216,13 @@ tape( 'for large positive input values, the function returns the last three bina var i; x = linspace( pow( 2.0, 20 )*PIO2, pow( 2.0, 60 )*PIO2, 4000 ); - y = [ 0.0, 0.0 ]; + y = new Float64Array( [ 0.0, 0.0 ] ); for ( i = 0; i < x.length; i++ ) { n = rempio2( x[i], y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); - t.strictEqual( n < 8, true, 'returns a value smaller than 8' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); + t.strictEqual( n < 8, true, 'returns expected value' ); } t.end(); }); @@ -233,13 +234,13 @@ tape( 'for large negative input values, the function returns the last three bina var i; x = linspace( -pow( 2.0, 20 )*PIO2, -pow( 2.0, 60 )*PIO2, 4000 ); - y = [ 0.0, 0.0 ]; + y = new Float64Array( [ 0.0, 0.0 ] ); for ( i = 0; i < x.length; i++ ) { n = rempio2( x[i], y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); - t.strictEqual( n < 8, true, 'returns a value smaller than 8' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); + t.strictEqual( n < 8, true, 'returns expected value' ); } t.end(); }); @@ -251,13 +252,13 @@ tape( 'for huge positive input values, the function returns the last three binar var i; x = linspace( pow( 2.0, 60 )*PIO2, pow( 2.0, 1020 )*PIO2, 6000 ); - y = [ 0.0, 0.0 ]; + y = new Float64Array( [ 0.0, 0.0 ] ); for ( i = 0; i < x.length; i++ ) { n = rempio2( x[i], y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); - t.strictEqual( n < 8, true, 'returns a value smaller than 8' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); + t.strictEqual( n < 8, true, 'returns expected value' ); } t.end(); }); @@ -269,13 +270,13 @@ tape( 'for huge negative input values, the function returns the last three binar var i; x = linspace( -pow( 2.0, 60 )*PIO2, -pow( 2.0, 1020 )*PIO2, 6000 ); - y = [ 0.0, 0.0 ]; + y = new Float64Array( [ 0.0, 0.0 ] ); for ( i = 0; i < x.length; i++ ) { n = rempio2( x[i], y ); - t.strictEqual( isInteger( n ), true, 'returns integer' ); - t.strictEqual( isNumber( y[0] ), true, 'assigns a number value to y[0]' ); - t.strictEqual( isNumber( y[1] ), true, 'assigns a number value to y[1]' ); - t.strictEqual( n < 8, true, 'returns a value smaller than 8' ); + t.strictEqual( isInteger( n ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[0] ), true, 'returns expected value' ); + t.strictEqual( isNumber( y[1] ), true, 'returns expected value' ); + t.strictEqual( n < 8, true, 'returns expected value' ); } t.end(); }); From 41993572c24c87399959bbdd3917fe0c0ed80bc4 Mon Sep 17 00:00:00 2001 From: GUNJ JOSHI Date: Sat, 8 Jun 2024 19:34:41 +0530 Subject: [PATCH 21/28] use the same exponent mask as that in javascript implementation Signed-off-by: GUNJ JOSHI --- .../@stdlib/math/base/special/rempio2/src/main.c | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c index 3b938164f352..040157e83693 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c @@ -80,6 +80,9 @@ static const int32_t NINE_PIO4_HIGH_WORD = 0x401c463b; // 2^20*π/2 = 1647099.3291652855 => 0100000100111001001000011111101101010100010001000010110100011000 => high word => 0x413921fb = 1094263291 => 01000001001110010010000111111011 static const int32_t MEDIUM = 0x413921fb; +// Exponent mask (2047 => 0x7ff): +static const int32_t EXPONENT_MASK = 0x7ff; + /* * Table of constants for `2/π` (`396` hex digits, `476` decimal). @@ -473,7 +476,7 @@ int32_t stdlib_base_rempio2( const double x, double *rem1, double *rem2 ) { *rem1 = r - w; stdlib_base_float64_get_high_word( *rem1, &uhigh ); high = ( int32_t )uhigh; - i = j - ( ( high >> 20 ) & STDLIB_CONSTANT_FLOAT64_HIGH_WORD_EXPONENT_MASK ); + i = j - ( ( high >> 20 ) & EXPONENT_MASK ); // Check if a second iteration is needed (good to 118 bits)... if ( i > 16 ) { From ff58f1ab87bcd40bd1258e7d5da1d450f338d654 Mon Sep 17 00:00:00 2001 From: Athan Date: Sat, 8 Jun 2024 12:04:20 -0700 Subject: [PATCH 22/28] Apply suggestions from code review Signed-off-by: Athan --- lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c index 040157e83693..37e69def5a24 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c @@ -487,7 +487,7 @@ int32_t stdlib_base_rempio2( const double x, double *rem1, double *rem2 ) { *rem1 = r - w; stdlib_base_float64_get_high_word( *rem1, &uhigh ); high = ( int32_t )uhigh; - i = j - ( ( high >> 20 ) & STDLIB_CONSTANT_FLOAT64_HIGH_WORD_EXPONENT_MASK ); + i = j - ( ( high >> 20 ) & EXPONENT_MASK ); // Check if a third iteration is needed (151 bits accumulated)... if ( i > 49 ) { From d0c2b0646f787da2cf9c12e88342676eeb885699 Mon Sep 17 00:00:00 2001 From: GUNJ JOSHI Date: Sun, 9 Jun 2024 08:20:49 +0530 Subject: [PATCH 23/28] declare arrays inside corresponding functions Signed-off-by: GUNJ JOSHI --- .../@stdlib/math/base/special/rempio2/src/main.c | 14 ++++++-------- 1 file changed, 6 insertions(+), 8 deletions(-) diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c index 37e69def5a24..c76f5ef275e9 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c @@ -121,14 +121,6 @@ static const double PIO2[] = { 2.16741683877804819444e-51 // 0x3569F31D, 0x00000000 }; -// Arrays for storing temporary values: -double TX[ 3 ] = { 0.0 }; -double TY[ 2 ] = { 0.0 }; -double F[ 20 ]; -double Q[ 20 ]; -double FQ[ 20 ]; -int32_t IQ[ 20 ]; - /** * Returns the last three binary digits of `N` with `y = x - Nπ/2` so that `|y| < π/2`. * @@ -145,6 +137,10 @@ int32_t IQ[ 20 ]; * @return last 3 binary digits */ int32_t rempio2Kernel( const double* x, double *y, int32_t e0, int32_t nx ) { + int32_t IQ[ 20 ]; + double FQ[ 20 ]; + double F[ 20 ]; + double Q[ 20 ]; int32_t carry; int32_t jz; int32_t jx; @@ -364,6 +360,8 @@ int32_t rempio2Kernel( const double* x, double *y, int32_t e0, int32_t nx ) { * int32_t n = stdlib_base_rempio2( 128.0, &rem1, &rem2 ); */ int32_t stdlib_base_rempio2( const double x, double *rem1, double *rem2 ) { + double TX[ 3 ]; + double TY[ 2 ]; uint32_t uhigh; uint32_t ulow; uint32_t uhx; From 4f816305964693e53712d7cfac09fc91ace09a6e Mon Sep 17 00:00:00 2001 From: GUNJ JOSHI Date: Sun, 9 Jun 2024 10:41:14 +0530 Subject: [PATCH 24/28] add extended comment for kernel rempio2 Signed-off-by: GUNJ JOSHI --- .../special/rempio2/lib/kernel_rempio2.js | 100 +++++++++++++++++- 1 file changed, 99 insertions(+), 1 deletion(-) diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/lib/kernel_rempio2.js b/lib/node_modules/@stdlib/math/base/special/rempio2/lib/kernel_rempio2.js index e6aebb0912bf..b3e3d0c49c38 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/lib/kernel_rempio2.js +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/lib/kernel_rempio2.js @@ -272,7 +272,105 @@ function compute( x, y, jz, q, q0, jk, jv, jx, f ) { * * ## Method * -* - The method is to compute the integer (`mod 8`) and fraction parts of `2x/π` without doing the full multiplication. In general, we skip the part of the product that is known to be a huge integer (more accurately, equals `0 mod 8` ). Thus, the number of operations is independent of the exponent of the input. +* - The method is to compute the integer (mod 8) and fraction parts of (2/pi)\*x without doing the full multiplication. In general we skip the part of the product that are known to be a huge integer (more accurately, = 0 mod 8 ). Thus the number of operations are independent of the exponent of the input. +* +* - (2/pi) is represented by an array of 24-bit integers in ipio2\[\]. +* +* - Input parameters: +* +* x\[\] The input value (must be positive) is broken into nx pieces of 24-bit integers in double precision format. x\[i\] will be the i-th 24 bit of x. The scaled exponent of x\[0\] is given in input parameter e0 (i.e., x\[0\]\*2^e0 match x's up to 24 bits. +* +* Example of breaking a double positive z into x\[0\]+x\[1\]+x\[2\]: +* +* ```tex +* e0 = \mathrm{ilogb}(z) - 23 +* z = \mathrm{scalbn}(z, -e0) +* ``` +* +* for i = 0,1,2 +* +* ```tex +* x[i] = \lfloor z \rfloor +* z = (z - x[i]) \times 2^{24} +* ``` +* +* y\[\] output result in an array of double precision numbers. +* +* The dimension of y\[\] is: +* 24-bit precision 1 +* 53-bit precision 2 +* 64-bit precision 2 +* 113-bit precision 3 +* +* The actual value is the sum of them. Thus for 113-bit precision, one may have to do something like: +* +* ```tex +* \mathrm{long\ double} \: t, w, r_{\text{head}}, r_{\text{tail}}; \\ +* t &= (\mathrm{long\ double}) y[2] + (\mathrm{long\ double}) y[1]; \\ +* w &= (\mathrm{long\ double}) y[0]; \\ +* r_{\text{head}} &= t + w; \\ +* r_{\text{tail}} &= w - (r_{\text{head}} - t); +* ``` +* +* e0 The exponent of x\[0\]. Must be <= 16360 or you need to expand the ipio2 table. +* +* nx dimension of x\[\] +* +* prec an integer indicating the precision: +* 0 24 bits (single) +* 1 53 bits (double) +* 2 64 bits (extended) +* 3 113 bits (quad) +* +* - External function: +* +* double scalbn(), floor(); +* +* - Here is the description of some local variables: +* +* jk jk+1 is the initial number of terms of ipio2\[\] needed in the computation. The minimum and recommended value for jk is 3,4,4,6 for single, double, extended, and quad. jk+1 must be 2 larger than you might expect so that our recomputation test works. (Up to 24 bits in the integer part (the 24 bits of it that we compute) and 23 bits in the fraction part may be lost to cancellation before we recompute.) +* +* jz local integer variable indicating the number of terms of ipio2\[\] used. +* +* jx nx - 1 +* +* jv index for pointing to the suitable ipio2\[\] for the computation. In general, we want +* +* ```tex +* \frac{{2^{e0} \cdot x[0] \cdot \mathrm{ipio2}[jv-1] \cdot 2^{-24jv}}}{{8}} +* ``` +* +* is an integer. Thus +* +* ```tex +* e0 - 3 - 24 \cdot jv \geq 0 \quad \text{or} \quad \frac{{e0 - 3}}{{24}} \geq jv +* ``` +* +* Hence +* +* ```tex +* jv = \max(0, \frac{{e0 - 3}}{{24}}) +* ``` +* +* jp jp+1 is the number of terms in PIo2\[\] needed, jp = jk. +* +* q\[\] double array with integral value, representing the 24-bits chunk of the product of x and 2/pi. +* +* q0 the corresponding exponent of q\[0\]. Note that the exponent for q\[i\] would be q0-24\*i. +* +* PIo2\[\] double precision array, obtained by cutting pi/2 into 24 bits chunks. +* +* f\[\] ipso2\[\] in floating point +* +* iq\[\] integer array by breaking up q\[\] in 24-bits chunk. +* +* fq\[\] final product of x\*(2/pi) in fq\[0\],..,fq\[jk\] +* +* ih integer. If >0 it indicates q\[\] is >= 0.5, hence it also indicates the \*sign\* of the result. +* +* - Constants: +* +* The hexadecimal values are the intended ones for the following constants. The decimal values may be used, provided that the compiler will convert from decimal to binary accurately enough to produce the hexadecimal values shown. * * @private * @param {PositiveNumber} x - input value From fd93a9de98d2623077fa99f7f05dd808f40daba0 Mon Sep 17 00:00:00 2001 From: GUNJ JOSHI Date: Sun, 9 Jun 2024 10:43:02 +0530 Subject: [PATCH 25/28] add extended comment for kernel rempio2 Signed-off-by: GUNJ JOSHI --- .../math/base/special/rempio2/src/main.c | 100 +++++++++++++++++- 1 file changed, 99 insertions(+), 1 deletion(-) diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c index c76f5ef275e9..aeeacd3268ab 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c @@ -126,7 +126,105 @@ static const double PIO2[] = { * * ## Method * -* - The method is to compute the integer (`mod 8`) and fraction parts of `2x/π` without doing the full multiplication. In general, we skip the part of the product that is known to be a huge integer (more accurately, equals `0 mod 8` ). Thus, the number of operations is independent of the exponent of the input. +* - The method is to compute the integer (mod 8) and fraction parts of (2/pi)\*x without doing the full multiplication. In general we skip the part of the product that are known to be a huge integer (more accurately, = 0 mod 8 ). Thus the number of operations are independent of the exponent of the input. +* +* - (2/pi) is represented by an array of 24-bit integers in ipio2\[\]. +* +* - Input parameters: +* +* x\[\] The input value (must be positive) is broken into nx pieces of 24-bit integers in double precision format. x\[i\] will be the i-th 24 bit of x. The scaled exponent of x\[0\] is given in input parameter e0 (i.e., x\[0\]\*2^e0 match x's up to 24 bits. +* +* Example of breaking a double positive z into x\[0\]+x\[1\]+x\[2\]: +* +* ```tex +* e0 = \mathrm{ilogb}(z) - 23 +* z = \mathrm{scalbn}(z, -e0) +* ``` +* +* for i = 0,1,2 +* +* ```tex +* x[i] = \lfloor z \rfloor +* z = (z - x[i]) \times 2^{24} +* ``` +* +* y\[\] output result in an array of double precision numbers. +* +* The dimension of y\[\] is: +* 24-bit precision 1 +* 53-bit precision 2 +* 64-bit precision 2 +* 113-bit precision 3 +* +* The actual value is the sum of them. Thus for 113-bit precision, one may have to do something like: +* +* ```tex +* \mathrm{long\ double} \: t, w, r_{\text{head}}, r_{\text{tail}}; \\ +* t &= (\mathrm{long\ double}) y[2] + (\mathrm{long\ double}) y[1]; \\ +* w &= (\mathrm{long\ double}) y[0]; \\ +* r_{\text{head}} &= t + w; \\ +* r_{\text{tail}} &= w - (r_{\text{head}} - t); +* ``` +* +* e0 The exponent of x\[0\]. Must be <= 16360 or you need to expand the ipio2 table. +* +* nx dimension of x\[\] +* +* prec an integer indicating the precision: +* 0 24 bits (single) +* 1 53 bits (double) +* 2 64 bits (extended) +* 3 113 bits (quad) +* +* - External function: +* +* double scalbn(), floor(); +* +* - Here is the description of some local variables: +* +* jk jk+1 is the initial number of terms of ipio2\[\] needed in the computation. The minimum and recommended value for jk is 3,4,4,6 for single, double, extended, and quad. jk+1 must be 2 larger than you might expect so that our recomputation test works. (Up to 24 bits in the integer part (the 24 bits of it that we compute) and 23 bits in the fraction part may be lost to cancellation before we recompute.) +* +* jz local integer variable indicating the number of terms of ipio2\[\] used. +* +* jx nx - 1 +* +* jv index for pointing to the suitable ipio2\[\] for the computation. In general, we want +* +* ```tex +* \frac{{2^{e0} \cdot x[0] \cdot \mathrm{ipio2}[jv-1] \cdot 2^{-24jv}}}{{8}} +* ``` +* +* is an integer. Thus +* +* ```tex +* e0 - 3 - 24 \cdot jv \geq 0 \quad \text{or} \quad \frac{{e0 - 3}}{{24}} \geq jv +* ``` +* +* Hence +* +* ```tex +* jv = \max(0, \frac{{e0 - 3}}{{24}}) +* ``` +* +* jp jp+1 is the number of terms in PIo2\[\] needed, jp = jk. +* +* q\[\] double array with integral value, representing the 24-bits chunk of the product of x and 2/pi. +* +* q0 the corresponding exponent of q\[0\]. Note that the exponent for q\[i\] would be q0-24\*i. +* +* PIo2\[\] double precision array, obtained by cutting pi/2 into 24 bits chunks. +* +* f\[\] ipso2\[\] in floating point +* +* iq\[\] integer array by breaking up q\[\] in 24-bits chunk. +* +* fq\[\] final product of x\*(2/pi) in fq\[0\],..,fq\[jk\] +* +* ih integer. If >0 it indicates q\[\] is >= 0.5, hence it also indicates the \*sign\* of the result. +* +* - Constants: +* +* The hexadecimal values are the intended ones for the following constants. The decimal values may be used, provided that the compiler will convert from decimal to binary accurately enough to produce the hexadecimal values shown. * * @private * @param x input value From c7cad3e883fa4115fb686adcb2c9575afef43b6d Mon Sep 17 00:00:00 2001 From: GUNJ JOSHI Date: Sun, 9 Jun 2024 11:59:50 +0530 Subject: [PATCH 26/28] initialize arrays F and Q at the time of initialization Signed-off-by: GUNJ JOSHI --- lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c index aeeacd3268ab..264bd78d0900 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c @@ -235,10 +235,10 @@ static const double PIO2[] = { * @return last 3 binary digits */ int32_t rempio2Kernel( const double* x, double *y, int32_t e0, int32_t nx ) { + double F[ 20 ] = { 0.0 }; + double Q[ 20 ] = { 0.0 }; int32_t IQ[ 20 ]; double FQ[ 20 ]; - double F[ 20 ]; - double Q[ 20 ]; int32_t carry; int32_t jz; int32_t jx; From 276dd5158c6c31b0e1c9788dd3a0ec3c66a7ccfa Mon Sep 17 00:00:00 2001 From: Philipp Burckhardt Date: Sun, 9 Jun 2024 18:46:45 -0400 Subject: [PATCH 27/28] refactor: avoid duplicated check for zero --- .../@stdlib/math/base/special/rempio2/src/main.c | 5 +---- 1 file changed, 1 insertion(+), 4 deletions(-) diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c index 264bd78d0900..a1610166ee10 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c @@ -376,10 +376,7 @@ int32_t rempio2Kernel( const double* x, double *y, int32_t e0, int32_t nx ) { jz += k; goto recompute; } - } - - // Chop off zero terms... - if ( z == 0.0 ) { + // Chop off zero terms... jz -= 1; q0 -= 24; while ( IQ[ jz ] == 0 ) { From ea4c65c9ab56cee2c717c3a10400ba6612a331d7 Mon Sep 17 00:00:00 2001 From: Philipp Burckhardt Date: Sun, 9 Jun 2024 19:22:21 -0400 Subject: [PATCH 28/28] docs: use bullets and update comment --- .../special/rempio2/lib/kernel_rempio2.js | 122 +++++++++--------- .../math/base/special/rempio2/src/main.c | 118 ++++++++--------- 2 files changed, 119 insertions(+), 121 deletions(-) diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/lib/kernel_rempio2.js b/lib/node_modules/@stdlib/math/base/special/rempio2/lib/kernel_rempio2.js index b3e3d0c49c38..6417f94af16d 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/lib/kernel_rempio2.js +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/lib/kernel_rempio2.js @@ -206,9 +206,7 @@ function compute( x, y, jz, q, q0, jk, jv, jx, f ) { jz += k; return compute( x, y, jz, q, q0, jk, jv, jx, f ); } - } - // Chop off zero terms... - if ( z === 0.0 ) { + // Chop off zero terms... jz -= 1; q0 -= 24; while ( IQ[ jz ] === 0 ) { @@ -272,105 +270,105 @@ function compute( x, y, jz, q, q0, jk, jv, jx, f ) { * * ## Method * -* - The method is to compute the integer (mod 8) and fraction parts of (2/pi)\*x without doing the full multiplication. In general we skip the part of the product that are known to be a huge integer (more accurately, = 0 mod 8 ). Thus the number of operations are independent of the exponent of the input. +* - The method is to compute the integer (mod 8) and fraction parts of (2/π) * x without doing the full multiplication. In general, we skip the part of the product that are known to be a huge integer (more accurately, = 0 mod 8 ). Thus the number of operations are independent of the exponent of the input. * -* - (2/pi) is represented by an array of 24-bit integers in ipio2\[\]. +* - (2/π) is represented by an array of 24-bit integers in `ipio2[]`. * * - Input parameters: * -* x\[\] The input value (must be positive) is broken into nx pieces of 24-bit integers in double precision format. x\[i\] will be the i-th 24 bit of x. The scaled exponent of x\[0\] is given in input parameter e0 (i.e., x\[0\]\*2^e0 match x's up to 24 bits. +* - `x[]` The input value (must be positive) is broken into `nx` pieces of 24-bit integers in double precision format. `x[i]` will be the i-th 24 bit of x. The scaled exponent of `x[0]` is given in input parameter `e0` (i.e., `x[0]*2^e0` match x's up to 24 bits). * -* Example of breaking a double positive z into x\[0\]+x\[1\]+x\[2\]: +* Example of breaking a double positive `z` into `x[0]+x[1]+x[2]`: * -* ```tex -* e0 = \mathrm{ilogb}(z) - 23 -* z = \mathrm{scalbn}(z, -e0) -* ``` +* ```tex +* e0 = \mathrm{ilogb}(z) - 23 +* z = \mathrm{scalbn}(z, -e0) +* ``` * -* for i = 0,1,2 +* for `i = 0,1,2` * -* ```tex -* x[i] = \lfloor z \rfloor -* z = (z - x[i]) \times 2^{24} -* ``` +* ```tex +* x[i] = \lfloor z \rfloor +* z = (z - x[i]) \times 2^{24} +* ``` * -* y\[\] output result in an array of double precision numbers. +* - `y[]` output result in an array of double precision numbers. * -* The dimension of y\[\] is: -* 24-bit precision 1 -* 53-bit precision 2 -* 64-bit precision 2 -* 113-bit precision 3 +* The dimension of `y[]` is: +* 24-bit precision 1 +* 53-bit precision 2 +* 64-bit precision 2 +* 113-bit precision 3 * -* The actual value is the sum of them. Thus for 113-bit precision, one may have to do something like: +* The actual value is the sum of them. Thus, for 113-bit precision, one may have to do something like: * -* ```tex -* \mathrm{long\ double} \: t, w, r_{\text{head}}, r_{\text{tail}}; \\ -* t &= (\mathrm{long\ double}) y[2] + (\mathrm{long\ double}) y[1]; \\ -* w &= (\mathrm{long\ double}) y[0]; \\ -* r_{\text{head}} &= t + w; \\ -* r_{\text{tail}} &= w - (r_{\text{head}} - t); -* ``` +* ```tex +* \mathrm{long\ double} \: t, w, r_{\text{head}}, r_{\text{tail}}; \\ +* t &= (\mathrm{long\ double}) y[2] + (\mathrm{long\ double}) y[1]; \\ +* w &= (\mathrm{long\ double}) y[0]; \\ +* r_{\text{head}} &= t + w; \\ +* r_{\text{tail}} &= w - (r_{\text{head}} - t); +* ``` * -* e0 The exponent of x\[0\]. Must be <= 16360 or you need to expand the ipio2 table. +* - `e0` The exponent of `x[0]`. Must be <= 16360 or you need to expand the `ipio2` table. * -* nx dimension of x\[\] +* - `nx` dimension of `x[]` * -* prec an integer indicating the precision: -* 0 24 bits (single) -* 1 53 bits (double) -* 2 64 bits (extended) -* 3 113 bits (quad) +* - `prec` an integer indicating the precision: +* 0 24 bits (single) +* 1 53 bits (double) +* 2 64 bits (extended) +* 3 113 bits (quad) * * - External function: * -* double scalbn(), floor(); +* - double `scalbn()`, `floor()`; * * - Here is the description of some local variables: * -* jk jk+1 is the initial number of terms of ipio2\[\] needed in the computation. The minimum and recommended value for jk is 3,4,4,6 for single, double, extended, and quad. jk+1 must be 2 larger than you might expect so that our recomputation test works. (Up to 24 bits in the integer part (the 24 bits of it that we compute) and 23 bits in the fraction part may be lost to cancellation before we recompute.) +* - `jk` `jk+1` is the initial number of terms of `ipio2[]` needed in the computation. The minimum and recommended value for `jk` is 3,4,4,6 for single, double, extended, and quad. `jk+1` must be 2 larger than you might expect so that our recomputation test works. (Up to 24 bits in the integer part (the 24 bits of it that we compute) and 23 bits in the fraction part may be lost to cancellation before we recompute.) * -* jz local integer variable indicating the number of terms of ipio2\[\] used. +* - `jz` local integer variable indicating the number of terms of `ipio2[]` used. * -* jx nx - 1 +* - `jx` `nx - 1` * -* jv index for pointing to the suitable ipio2\[\] for the computation. In general, we want +* - `jv` index for pointing to the suitable `ipio2[]` for the computation. In general, we want * -* ```tex -* \frac{{2^{e0} \cdot x[0] \cdot \mathrm{ipio2}[jv-1] \cdot 2^{-24jv}}}{{8}} -* ``` +* ```tex +* \frac{{2^{e0} \cdot x[0] \cdot \mathrm{ipio2}[jv-1] \cdot 2^{-24jv}}}{{8}} +* ``` * -* is an integer. Thus +* to be an integer. Thus * -* ```tex -* e0 - 3 - 24 \cdot jv \geq 0 \quad \text{or} \quad \frac{{e0 - 3}}{{24}} \geq jv -* ``` +* ```tex +* e0 - 3 - 24 \cdot jv \geq 0 \quad \text{or} \quad \frac{{e0 - 3}}{{24}} \geq jv +* ``` * -* Hence +* Hence * -* ```tex -* jv = \max(0, \frac{{e0 - 3}}{{24}}) -* ``` +* ```tex +* jv = \max(0, \frac{{e0 - 3}}{{24}}) +* ``` * -* jp jp+1 is the number of terms in PIo2\[\] needed, jp = jk. +* - `jp` `jp+1` is the number of terms in `PIo2[]` needed, `jp = jk`. * -* q\[\] double array with integral value, representing the 24-bits chunk of the product of x and 2/pi. +* - `q[]` double array with integral value, representing the 24-bits chunk of the product of `x` and `2/π`. * -* q0 the corresponding exponent of q\[0\]. Note that the exponent for q\[i\] would be q0-24\*i. +* - `q0` the corresponding exponent of `q[0]`. Note that the exponent for `q[i]` would be `q0-24*i`. * -* PIo2\[\] double precision array, obtained by cutting pi/2 into 24 bits chunks. +* - `PIo2[]` double precision array, obtained by cutting `π/2` into 24 bits chunks. * -* f\[\] ipso2\[\] in floating point +* - `f[]` `ipso2[]` in floating point * -* iq\[\] integer array by breaking up q\[\] in 24-bits chunk. +* - `iq[]` integer array by breaking up `q[]` in 24-bits chunk. * -* fq\[\] final product of x\*(2/pi) in fq\[0\],..,fq\[jk\] +* - `fq[]` final product of `x*(2/π)` in `fq[0],..,fq[jk]` * -* ih integer. If >0 it indicates q\[\] is >= 0.5, hence it also indicates the \*sign\* of the result. +* - `ih` integer. If >0 it indicates `q[]` is >= 0.5, hence it also indicates the _sign_ of the result. * * - Constants: * -* The hexadecimal values are the intended ones for the following constants. The decimal values may be used, provided that the compiler will convert from decimal to binary accurately enough to produce the hexadecimal values shown. +* - The hexadecimal values are the intended ones for the following constants. The decimal values may be used, provided that the compiler will convert from decimal to binary accurately enough to produce the hexadecimal values shown. * * @private * @param {PositiveNumber} x - input value diff --git a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c index a1610166ee10..dc7289455ef1 100644 --- a/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c +++ b/lib/node_modules/@stdlib/math/base/special/rempio2/src/main.c @@ -126,105 +126,105 @@ static const double PIO2[] = { * * ## Method * -* - The method is to compute the integer (mod 8) and fraction parts of (2/pi)\*x without doing the full multiplication. In general we skip the part of the product that are known to be a huge integer (more accurately, = 0 mod 8 ). Thus the number of operations are independent of the exponent of the input. +* - The method is to compute the integer (mod 8) and fraction parts of (2/π) * x without doing the full multiplication. In general, we skip the part of the product that are known to be a huge integer (more accurately, = 0 mod 8 ). Thus the number of operations are independent of the exponent of the input. * -* - (2/pi) is represented by an array of 24-bit integers in ipio2\[\]. +* - (2/π) is represented by an array of 24-bit integers in `ipio2[]`. * * - Input parameters: * -* x\[\] The input value (must be positive) is broken into nx pieces of 24-bit integers in double precision format. x\[i\] will be the i-th 24 bit of x. The scaled exponent of x\[0\] is given in input parameter e0 (i.e., x\[0\]\*2^e0 match x's up to 24 bits. +* - `x[]` The input value (must be positive) is broken into `nx` pieces of 24-bit integers in double precision format. `x[i]` will be the i-th 24 bit of x. The scaled exponent of `x[0]` is given in input parameter `e0` (i.e., `x[0]*2^e0` match x's up to 24 bits). * -* Example of breaking a double positive z into x\[0\]+x\[1\]+x\[2\]: +* Example of breaking a double positive `z` into `x[0]+x[1]+x[2]`: * -* ```tex -* e0 = \mathrm{ilogb}(z) - 23 -* z = \mathrm{scalbn}(z, -e0) -* ``` +* ```tex +* e0 = \mathrm{ilogb}(z) - 23 +* z = \mathrm{scalbn}(z, -e0) +* ``` * -* for i = 0,1,2 +* for `i = 0,1,2` * -* ```tex -* x[i] = \lfloor z \rfloor -* z = (z - x[i]) \times 2^{24} -* ``` +* ```tex +* x[i] = \lfloor z \rfloor +* z = (z - x[i]) \times 2^{24} +* ``` * -* y\[\] output result in an array of double precision numbers. +* - `y[]` output result in an array of double precision numbers. * -* The dimension of y\[\] is: -* 24-bit precision 1 -* 53-bit precision 2 -* 64-bit precision 2 -* 113-bit precision 3 +* The dimension of `y[]` is: +* 24-bit precision 1 +* 53-bit precision 2 +* 64-bit precision 2 +* 113-bit precision 3 * -* The actual value is the sum of them. Thus for 113-bit precision, one may have to do something like: +* The actual value is the sum of them. Thus, for 113-bit precision, one may have to do something like: * -* ```tex -* \mathrm{long\ double} \: t, w, r_{\text{head}}, r_{\text{tail}}; \\ -* t &= (\mathrm{long\ double}) y[2] + (\mathrm{long\ double}) y[1]; \\ -* w &= (\mathrm{long\ double}) y[0]; \\ -* r_{\text{head}} &= t + w; \\ -* r_{\text{tail}} &= w - (r_{\text{head}} - t); -* ``` +* ```tex +* \mathrm{long\ double} \: t, w, r_{\text{head}}, r_{\text{tail}}; \\ +* t &= (\mathrm{long\ double}) y[2] + (\mathrm{long\ double}) y[1]; \\ +* w &= (\mathrm{long\ double}) y[0]; \\ +* r_{\text{head}} &= t + w; \\ +* r_{\text{tail}} &= w - (r_{\text{head}} - t); +* ``` * -* e0 The exponent of x\[0\]. Must be <= 16360 or you need to expand the ipio2 table. +* - `e0` The exponent of `x[0]`. Must be <= 16360 or you need to expand the `ipio2` table. * -* nx dimension of x\[\] +* - `nx` dimension of `x[]` * -* prec an integer indicating the precision: -* 0 24 bits (single) -* 1 53 bits (double) -* 2 64 bits (extended) -* 3 113 bits (quad) +* - `prec` an integer indicating the precision: +* 0 24 bits (single) +* 1 53 bits (double) +* 2 64 bits (extended) +* 3 113 bits (quad) * * - External function: * -* double scalbn(), floor(); +* - double `scalbn()`, `floor()`; * * - Here is the description of some local variables: * -* jk jk+1 is the initial number of terms of ipio2\[\] needed in the computation. The minimum and recommended value for jk is 3,4,4,6 for single, double, extended, and quad. jk+1 must be 2 larger than you might expect so that our recomputation test works. (Up to 24 bits in the integer part (the 24 bits of it that we compute) and 23 bits in the fraction part may be lost to cancellation before we recompute.) +* - `jk` `jk+1` is the initial number of terms of `ipio2[]` needed in the computation. The minimum and recommended value for `jk` is 3,4,4,6 for single, double, extended, and quad. `jk+1` must be 2 larger than you might expect so that our recomputation test works. (Up to 24 bits in the integer part (the 24 bits of it that we compute) and 23 bits in the fraction part may be lost to cancellation before we recompute.) * -* jz local integer variable indicating the number of terms of ipio2\[\] used. +* - `jz` local integer variable indicating the number of terms of `ipio2[]` used. * -* jx nx - 1 +* - `jx` `nx - 1` * -* jv index for pointing to the suitable ipio2\[\] for the computation. In general, we want +* - `jv` index for pointing to the suitable `ipio2[]` for the computation. In general, we want * -* ```tex -* \frac{{2^{e0} \cdot x[0] \cdot \mathrm{ipio2}[jv-1] \cdot 2^{-24jv}}}{{8}} -* ``` +* ```tex +* \frac{{2^{e0} \cdot x[0] \cdot \mathrm{ipio2}[jv-1] \cdot 2^{-24jv}}}{{8}} +* ``` * -* is an integer. Thus +* to be an integer. Thus * -* ```tex -* e0 - 3 - 24 \cdot jv \geq 0 \quad \text{or} \quad \frac{{e0 - 3}}{{24}} \geq jv -* ``` +* ```tex +* e0 - 3 - 24 \cdot jv \geq 0 \quad \text{or} \quad \frac{{e0 - 3}}{{24}} \geq jv +* ``` * -* Hence +* Hence * -* ```tex -* jv = \max(0, \frac{{e0 - 3}}{{24}}) -* ``` +* ```tex +* jv = \max(0, \frac{{e0 - 3}}{{24}}) +* ``` * -* jp jp+1 is the number of terms in PIo2\[\] needed, jp = jk. +* - `jp` `jp+1` is the number of terms in `PIo2[]` needed, `jp = jk`. * -* q\[\] double array with integral value, representing the 24-bits chunk of the product of x and 2/pi. +* - `q[]` double array with integral value, representing the 24-bits chunk of the product of `x` and `2/π`. * -* q0 the corresponding exponent of q\[0\]. Note that the exponent for q\[i\] would be q0-24\*i. +* - `q0` the corresponding exponent of `q[0]`. Note that the exponent for `q[i]` would be `q0-24*i`. * -* PIo2\[\] double precision array, obtained by cutting pi/2 into 24 bits chunks. +* - `PIo2[]` double precision array, obtained by cutting `π/2` into 24 bits chunks. * -* f\[\] ipso2\[\] in floating point +* - `f[]` `ipso2[]` in floating point * -* iq\[\] integer array by breaking up q\[\] in 24-bits chunk. +* - `iq[]` integer array by breaking up `q[]` in 24-bits chunk. * -* fq\[\] final product of x\*(2/pi) in fq\[0\],..,fq\[jk\] +* - `fq[]` final product of `x*(2/π)` in `fq[0],..,fq[jk]` * -* ih integer. If >0 it indicates q\[\] is >= 0.5, hence it also indicates the \*sign\* of the result. +* - `ih` integer. If >0 it indicates `q[]` is >= 0.5, hence it also indicates the _sign_ of the result. * * - Constants: * -* The hexadecimal values are the intended ones for the following constants. The decimal values may be used, provided that the compiler will convert from decimal to binary accurately enough to produce the hexadecimal values shown. +* - The hexadecimal values are the intended ones for the following constants. The decimal values may be used, provided that the compiler will convert from decimal to binary accurately enough to produce the hexadecimal values shown. * * @private * @param x input value