This repository was archived by the owner on Nov 18, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathclassification_celltype.m
187 lines (162 loc) · 7.27 KB
/
classification_celltype.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
function celltype = classification_celltype(config, force, do_plot)
%
% Use as
% celltype = classification_celltype(config, force, do_plot)
%
% force : whether to redo analyses or read previous save (true/false)
% do_plot : optional (default = true), can be set to false to only compute
% value without plotting
%
% This file is part of EpiCode, see
% http://www.github.com/stephenwhitmarsh/EpiCode for documentation and details.
%
% EpiCode is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% EpiCode is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with EpiCode. If not, see <http://www.gnu.org/licenses/>.
%% The 2 references used to make this function:
%
% Peyrache et al., 2012 - Spatiotemporal dynamics of neocortical excitation and
% inhibition during human sleep. www.pnas.org/cgi/doi/10.1073/pnas.1109895109
% Human recordings
% Discrimination of Pyramidal (Pyr) Cells and Fast-Spiking (FS) Interneurons (Int).
% Average waveforms were computed for each isolated cell. As described previously,
% the half width of the extracellular positive deflection has, at the neuronal population level,
% a bimodal distribution (1, 2). The separation is even more
% striking when the valley-to-peak parameter (2) is added for 2D
% clustering (Fig. 2 A and B). Automatic clustering of these average waveforms
% from individual cells by using a k-means algorithm discriminated two groups
% of cells (Fig. 2 A and B). The resultant clustering was further confirmed by
% an E-M clustering method (Fig. S1)
% Elahian et al., 2018 - Low-Voltage Fast Seizures in Humans Begin with Increased
% Interneuron Firing. doi:10.1002/ana.25325
% Utilise le peak asymetry en plus, defini comme :
% peak_asymetry = (b-a)/(b+a);
% With a : amplitude of the first peak
% And b : amplitude of the second peak
% (with the AP trough between the two peaks)
%% analysis
config{1}.tablesavedir = ft_getopt(config{1}, 'tablesavedir', config{1}.datasavedir);
fname = fullfile(config{1}.tablesavedir, 'allpatients_cell_type.xlsx');
if exist(fname, 'file') && force == false
fprintf('Reading %s\n', fname);
celltype = readtable(fname);
return
end
if nargin < 3
do_plot = true;
end
%gather all data to perform clustering
data.patient_nr = [];
data.ipart = [];
data.label = {};
data.cluster_group = {};
data.halfwidth = [];
data.peaktrough = [];
data.troughpeak = [];
data.peak_asymetry = [];
for ipatient = 1:size(config, 2)
waveformstats = spikeWaveformStats(config{ipatient}, [], false);
for ipart = 1:size(config{ipatient}.directorylist, 2)
for i_unit = 1:size(waveformstats{ipart}.label, 2)
data.patient_nr(end+1) = ipatient;
data.ipart(end+1) = ipart;
data.label{end+1} = waveformstats{ipart}.label{i_unit};
data.cluster_group{end+1} = strrep(waveformstats{ipart}.cluster_group{i_unit}, ' ', '');
data.halfwidth(end+1) = waveformstats{ipart}.halfwidth.val(i_unit)*1000;%ms
data.troughpeak(end+1) = waveformstats{ipart}.troughpeak.val(i_unit) * 1000;
a = waveformstats{ipart}.peaktrough.y(i_unit, 1) * -waveformstats{ipart}.peak_direction(i_unit);
b = waveformstats{ipart}.troughpeak.y(i_unit, 2) * -waveformstats{ipart}.peak_direction(i_unit);
data.peak_asymetry(end+1) = (b-a)/(b+a);
end
end
end
%remove nans:
toremove = isnan(data.halfwidth) | isnan(data.troughpeak);
data.halfwidth(toremove) = [];
data.troughpeak(toremove) = [];
data.peak_asymetry(toremove) = [];
data.label(toremove) = [];
data.cluster_group(toremove) = [];
%clusters peyrache
X = [data.halfwidth; data.troughpeak]';
[idx_p,C_p] = kmeans(X, 2, 'maxiter', 100000, 'replicates', 100);
[~, idx_in] = min([mean(data.halfwidth(idx_p == 1)), mean(data.halfwidth(idx_p == 2))]);
idx_celltype.p = ["putative_PN", "putative_PN"];
idx_celltype.p(idx_in) = "putative_IN";
%clusters elahian
X = [data.halfwidth; data.troughpeak; data.peak_asymetry]';
[idx_e,C_e] = kmeans(X, 2, 'maxiter', 100000, 'replicates', 100);
[~, idx_in] = min([mean(data.halfwidth(idx_e == 1)), mean(data.halfwidth(idx_e == 2))]);
idx_celltype.e = ["putative_PN", "putative_PN"];
idx_celltype.e(idx_in) = "putative_IN";
% table cell types
celltype = table.empty;
irow = 0;
for i_unit = 1:size(data.label, 2)
irow = irow+1;
celltype.patient_ID{irow} = config{data.patient_nr(i_unit)}.prefix(1:end-1);
celltype.unit_ID{irow} = data.label{i_unit};
celltype.cluster_group{irow} = data.cluster_group{i_unit};
celltype.halfwidth_ms(irow) = data.halfwidth(i_unit);
celltype.troughpeak_ms(irow) = data.troughpeak(i_unit);
celltype.peak_asymetry(irow) = data.peak_asymetry(i_unit);
celltype.celltype_peyrache{irow} = idx_celltype.p(idx_p(i_unit));
celltype.celltype_elahian{irow} = idx_celltype.e(idx_e(i_unit));
end
%% plots
if do_plot
for imethod = ["peyrache", "elahian"]
fig = figure;
for i_unit = 1:size(data.label, 2)
celltype_unit = celltype.(sprintf('celltype_%s', imethod)){i_unit};
if contains(celltype_unit, 'PN')
plottype = 'b';
elseif contains(celltype_unit, 'IN')
plottype = 'r';
end
x = data.halfwidth(i_unit);
y = data.troughpeak(i_unit); %en ms
peak_asymetry = data.peak_asymetry(i_unit);
if imethod == "peyrache"
if contains(data.cluster_group{i_unit}, 'good')
scatter(x,y,plottype, 'filled');
else
scatter(x,y,plottype);
end
%plot centroids
if i_unit == size(data.label, 2)
scatter(C_p(:,1), C_p(:,2), 'xk', 'linewidth', 2);
end
elseif imethod == "elahian"
if contains(data.cluster_group{i_unit}, 'good')
scatter3(x,y,peak_asymetry,plottype, 'filled'); % 3D plot
else
scatter3(x,y,peak_asymetry,plottype); % 3D plot
end
%plot centroids
if i_unit == size(data.label, 2)
scatter3(C_e(:,1), C_e(:,2), C_e(:,3), 'xk', 'linewidth', 2);
end
end
hold on;
end
set(gca, 'TickDir', 'out', 'FontWeight', 'bold', 'FontSize', 15);
xlabel('halfwidth(ms)');
ylabel('trough-peak (ms)');
zlabel('peak asymetry');
figname = fullfile(config{1}.imagesavedir, 'Classification_in_pn', imethod);
savefigure_own(fig, figname, 'png', 'pdf', 'fig', 'close');
end
end
%% save results
delete(fname);
writetable(celltype, fname);