This repository was archived by the owner on Nov 18, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathhierachical_clustering.m
96 lines (91 loc) · 4.9 KB
/
hierachical_clustering.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
%% Euclidian distance for hierarchical clustering
% eucD = pdist(LFP_concatinated_z,'seuclidean');
% eucD = pdist(shifted_clean_z,@naneucdist); % method to allow nans
%
% [Y,stress,disparities] = mdscale(eucD,3,'Criterion','sstress');
% figure;
% scatter3(Y(:,1),Y(:,2),Y(:,3));
%% Hierarchical Clustering
% clustTreeEuc = linkage(eucD,'average');
% loop over increasing nr of clusters
for N = 2 : 6
% % plot tree Hierarchical Clustering
% fig = figure;
% fig.Renderer = 'Painters';
%
% subplot(1,3,1);
% [h,nodes] = dendrogram(clustTreeEuc,0);
% title(sprintf('Cophenetic corr: %0.2f',cophenet(clustTreeEuc,eucD)));
% set(gca,'xtick',[]);
%
% subplot(1,3,2);
% [h,nodes] = dendrogram(clustTreeEuc,10);
% title('Max leafs: 10');
%
% subplot(1,3,3);
% [h,nodes] = dendrogram(clustTreeEuc,N);
% title(sprintf('Max leafs: %d',N));
% xlabel('Leaf number');
%
% for i = 1 : N
% sumc(i) = sum(nodes==i);
% end
% set(gca,'Xticklabel',sumc);
% xlabel('#Datapoints');
%
% for i = 1 : N
% cluster{i} = LFP_concatinated(nodes==i,:);
% cluster_mean(i,:) = mean(cluster{i});
% end
% ymin = min(min(cluster_mean));
% ymax = max(max(cluster_mean));
%
% set(fig,'PaperOrientation','landscape');
% set(fig,'PaperUnits','normalized');
% set(fig,'PaperPosition', [0 0 1 1]);
% % print(fig, '-dpdf', fullfile(cfg.imagesavedir,[cfg.prefix,'dendogram_',cfg.name{imarker},'_N',num2str(N),'.pdf']),'-r600');
% print(fig, '-dpng', fullfile(cfg.imagesavedir,[cfg.prefix,'dendogram_',cfg.name{imarker},'_N',num2str(N),'.png']));
% close all
%
%
% % plot data
%
% fig = figure;
% fig.Renderer = 'Painters';
%
% for i = 1 : N
%
% if size(find(nodes==i),1) > 1
% [LFP_concatinated_aligned,~] = align_data(LFP_concatinated_z(nodes==i,:),5);
% else
% LFP_concatinated_aligned = LFP_concatinated_z(nodes==i,:);
% end
%
% subplot(3,N,i);
% imagesc(LFP_concatinated_z(nodes==i,:));
% set(gca,'xtick',[]);
%
% subplot(3,N,i+N*1);
% imagesc(LFP_concatinated_aligned);
% set(gca,'xtick',[]);
%
% subplot(3,N,i+N*2); hold;
%
% cfgtemp = [];
% cfgtemp.trials = find(nodes == i);
% sel = ft_timelockanalysis(cfgtemp,LFP{ipart}{imarker});
%
% plot(sel.time, sel.avg,'color',[0.7, 0.7, 0.7]);
% plot(sel.time, mean(sel.avg),'color','k');
%
% end
% % subplot(3,N,N*2+1);
% % [silh,h] = silhouette(shifted_clean_z,nodes,'euclidean');
% %
% set(fig,'PaperOrientation','landscape');
% set(fig,'PaperUnits','normalized');
% set(fig,'PaperPosition', [0 0 1 1]);
% % print(fig, '-dpdf', fullfile(cfg.imagesavedir,[cfg.prefix,'hierach_clusters_',cfg.name{imarker},'_N',num2str(N),'.pdf']),'-r600');
% print(fig, '-dpng', fullfile(cfg.imagesavedir,[cfg.prefix,'hierach_clusters_',cfg.name{imarker},'_N',num2str(N),'.png']));
% close all
% dbscan