forked from diffpy/diffpy.srmise
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
executable file
·667 lines (576 loc) · 21 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
#!/usr/bin/env python
##############################################################################
#
# SrMise by Luke Granlund
# (c) 2014 trustees of the Michigan State University.
# All rights reserved.
#
# File coded by: Luke Granlund
#
# See LICENSE.txt for license information.
#
##############################################################################
"""plot extracted peaks and comparison to ideal distances (if given)"""
import optparse
import sys
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as AA
import numpy as np
from matplotlib.pyplot import MultipleLocator
from mpl_toolkits.axes_grid1 import make_axes_locatable
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from diffpy.srmise import PDFPeakExtraction, PeakStability
from diffpy.srmise.pdfpeakextraction import resample
# For a given figure, returns a label of interest
labeldict = {}
default_gobs_style = {
"color": "b",
"linestyle": "",
"markeredgecolor": "b",
"marker": "o",
"markerfacecolor": "none",
"markersize": 4,
}
default_gfit_style = {"color": "g"}
default_gind_style = {"facecolor": "green", "alpha": 0.2}
default_gres_style = {}
default_ep_style = {}
default_ip_style = {}
default_dg_style = {
"linestyle": "none",
"color": "black",
"marker": "o",
"markerfacecolor": "black",
"markeredgecolor": "black",
"markersize": 1,
"antialiased": False,
}
def setfigformat(figsize):
from matplotlib import rc
rc("legend", numpoints=2)
rc("figure", figsize=figsize)
rc("axes", titlesize=12, labelsize=11)
rc("xtick", labelsize=10)
rc("ytick", labelsize=10)
rc("lines", linewidth=0.75, markeredgewidth=0.5)
return
def gr_formataxis(ax=None):
if ax is None:
ax = plt.gca()
ax.xaxis.set_minor_locator(MultipleLocator(1))
ax.yaxis.set_label_position("left")
ax.yaxis.tick_left()
ax.yaxis.set_ticks_position("both")
return
def comparepositions(ppe, ip=None, **kwds):
ax = kwds.get("ax", plt.gca())
base = kwds.get("base", 0.0)
yideal = kwds.get("yideal", -1.0)
yext = kwds.get("yext", 1.0)
ep_style = kwds.get("ep_style", default_ep_style)
ip_style = kwds.get("ip_style", default_ip_style)
yideal_label = kwds.get("yideal_label", r"ideal")
yext_label = kwds.get("yext_label", r"found")
pmin = kwds.get("pmin", -np.inf)
pmax = kwds.get("pmax", np.inf)
ep = [p["position"] for p in ppe.model]
ep = [p for p in ep if p >= pmin and p <= pmax]
if ip is not None:
xi = np.NaN + np.zeros(3 * len(ip))
xi[0::3] = ip
xi[1::3] = ip
yi = np.zeros_like(xi) + base
yi[1::3] += yideal
plt.plot(xi, yi, "b", lw=1.5, **ip_style)
xe = np.NaN + np.zeros(3 * len(ep))
xe[0::3] = ep
xe[1::3] = ep
ye = np.zeros_like(xe) + base
ye[1::3] += yext
plt.plot(xe, ye, "g", lw=1.5, **ep_style)
if ip is not None:
yb = (base, base)
plt.axhline(base, linestyle=":", color="k")
ax.yaxis.set_ticks([base + 0.5 * yideal, base + 0.5 * yext])
ax.yaxis.set_ticklabels([yideal_label, yext_label])
else:
ax.yaxis.set_ticks([base + 0.5 * yext])
ax.yaxis.set_ticklabels([yext_label])
# Set ylim explicitly, for case where yext is empty.
if ip is not None:
plt.ylim(base + yideal, base + yext)
else:
plt.ylim(base, base + yext)
for tick in ax.yaxis.get_major_ticks():
tick.tick1line.set_markersize(0)
tick.tick2line.set_markersize(0)
tick.label1.set_verticalalignment("center")
tick.label1.set_fontsize(8)
ticks = ax.yaxis.get_major_ticks()
ticks[-1].label1.set_color("green")
if ip is not None:
ticks[0].label1.set_color("blue")
return
def dgseries(stability, **kwds):
ax = kwds.get("ax", plt.gca())
dg_style = kwds.get("dg_style", default_dg_style)
scale = kwds.get("scale", 1.0)
dgmin = kwds.get("dgmin", stability.results[0][0]) * scale
dgmax = kwds.get("dgmax", stability.results[-1][0]) * scale
pmin = kwds.get("pmin", 0.0)
pmax = kwds.get("pmax", np.inf)
x = []
y = []
for dg, peaks, bl, dr in stability.results:
if dg * scale < dgmin or dg * scale > dgmax:
continue
peakpos = [p["position"] for p in peaks]
peakpos = [p for p in peakpos if p >= pmin and p <= pmax]
x.extend(peakpos)
y.extend(np.zeros_like(peakpos) + dg * scale)
plt.plot(x, y, **dg_style)
def labelallsubplots():
rv = []
for i, c in enumerate("abcd"):
plt.subplot(221 + i)
s = "(%s)" % c
ht = plt.text(
0.04,
0.95,
s,
horizontalalignment="left",
verticalalignment="top",
transform=plt.gca().transAxes,
weight="bold",
)
rv.append(ht)
return rv
def makeplot(ppe_or_stability, ip=None, **kwds):
"""Plot stuff"""
if isinstance(ppe_or_stability, PeakStability):
stability = ppe_or_stability
ppe = stability.ppe
else:
stability = None
ppe = ppe_or_stability
if ppe.extracted is None:
# Makeplot requires a ModelCluster, so whip one up.
from diffpy.srmise import ModelCluster
ppe.defaultvars() # Make sure everything has some setting. This
# shouldn't have harmful side effects.
rangeslice = ppe.getrangeslice()
x = ppe.x[rangeslice]
y = ppe.y[rangeslice]
dy = ppe.effective_dy[rangeslice]
mcluster = ModelCluster(
ppe.initial_peaks, ppe.baseline, x, y, dy, None, ppe.error_method, ppe.pf
)
ext = mcluster
else:
ext = ppe.extracted
figdict = {}
# Range along x-axis
xlo = kwds.get("xlo", ext.r_cluster[0])
xhi = kwds.get("xhi", ext.r_cluster[-1])
# Range of PDF to display
# This is deferred until the defaults can be calculated
# min_gr
# max_gr
# Define heights and interstitial offsets
# All values in percent of main axis.
top_offset = kwds.get("top_offset", 0.0)
dg_height = kwds.get("dg_height", 15.0 if stability is not None else 0.0)
cmp_height = kwds.get("cmp_height", 15.0 if ip is not None else 7.5)
datatop_offset = kwds.get("datatop_offset", 3.0)
# <- Data appears here ->
databottom_offset = kwds.get("databottom_offset", 3.0)
# <- Residual appears here ->
bottom_offset = kwds.get("bottom_offset", 3.0)
# Style options
dg_style = kwds.get("dg_style", default_dg_style)
gobs_style = kwds.get("gobs_style", default_gobs_style)
gfit_style = kwds.get("gfit_style", default_gfit_style)
gind_style = kwds.get("gind_style", default_gind_style)
gres_style = kwds.get("gres_style", default_gres_style)
ep_style = kwds.get("ep_style", default_ep_style)
ip_style = kwds.get("ip_style", default_ip_style)
# Label options
userxlabel = kwds.get("xlabel", r"r ($\mathrm{\AA}$)")
userylabel = kwds.get("ylabel", r"G ($\mathrm{\AA^{-2}}$)")
datalabelx = kwds.get("datalabelx", 0.04)
yideal_label = kwds.get("yideal_label", r"ideal")
yext_label = kwds.get("yext_label", r"found")
# Other options
datalabel = kwds.get("datalabel", None)
dgformatstr = kwds.get("dgformatstr", r"$\delta$g=%f")
dgformatpost = kwds.get("dgformatpost", None) # ->userfunction(string)
show_fit = kwds.get("show_fit", True)
show_individual = kwds.get("show_individual", True)
fill_individual = kwds.get("fill_individual", True)
show_observed = kwds.get("show_observed", True)
show_residual = kwds.get("show_residual", True)
mask_residual = kwds.get("mask_residual", False) # -> number
show_annotation = kwds.get("show_annotation", True)
scale = kwds.get("scale", 1.0) # Apply a global scaling factor to the data
# Define the various data which will be plotted
r = ext.r_cluster
dr = (r[-1] - r[0]) / len(r)
rexpand = np.concatenate(
(np.arange(r[0] - dr, xlo, -dr)[::-1], r, np.arange(r[-1] + dr, xhi + dr, dr))
)
rfine = np.arange(r[0], r[-1], 0.1 * dr)
gr_obs = np.array(resample(ppe.x, ppe.y, rexpand)) * scale
# gr_fit = resample(r, ext.value(), rfine)
gr_fit = np.array(ext.value(rfine)) * scale
gr_fit_baseline = np.array(ext.valuebl(rfine)) * scale
gr_fit_ind = [gr_fit_baseline + np.array(p.value(rfine)) * scale for p in ext.model]
gr_res = np.array(ext.residual()) * scale
if mask_residual:
gr_res = np.ma.masked_outside(gr_res, -mask_residual, mask_residual)
all_gr = []
if show_fit:
all_gr.append(gr_fit)
# if show_individual: all_gr.extend([gr_fit_baseline, gr_fit_ind])
if show_individual:
all_gr.append(gr_fit_baseline)
if len(gr_fit_ind) > 0:
all_gr.extend(gr_fit_ind)
if show_observed:
all_gr.append(gr_obs)
# gr_fit_ind is a list of lists, so use np.min/max
# The funky bit with scale makes sure that a user-specified value
# has scale applied to it, without messing up the default values,
# which are calculated from already scaled quantities.
min_gr = kwds.get("min_gr", np.min([np.min(gr) for gr in all_gr]) / scale) * scale
max_gr = kwds.get("max_gr", np.max([np.max(gr) for gr in all_gr]) / scale) * scale
if show_residual:
min_res = np.min(gr_res)
max_res = np.max(gr_res)
else:
min_res = 0.0
max_res = 0.0
# Derive various y limits based on all the offsets
rel_height = (
100.0
- top_offset
- dg_height
- cmp_height
- datatop_offset
- databottom_offset
- bottom_offset
)
abs_height = 100 * ((max_gr - min_gr) + (max_res - min_res)) / rel_height
yhi = (
max_gr
+ (top_offset + dg_height + cmp_height + datatop_offset) * abs_height / 100
)
ylo = yhi - abs_height
yhi = kwds.get("yhi", yhi)
ylo = kwds.get("ylo", ylo)
datatop = yhi - (yhi - ylo) * 0.01 * (top_offset + dg_height + cmp_height)
datalabeltop = 1 - 0.01 * (top_offset + dg_height + cmp_height + datatop_offset)
resbase = ylo + bottom_offset * abs_height / 100 - min_res
resbase = kwds.get("resbase", resbase)
fig = kwds.get("figure", plt.gcf())
fig.clf()
ax_data = AA.Subplot(fig, 111)
fig.add_subplot(ax_data)
figdict["fig"] = fig
figdict["data"] = ax_data
# Plot the data, fit, and residual
if show_observed:
plt.plot(rexpand, gr_obs, **gobs_style)
if show_fit:
plt.plot(rfine, gr_fit, **gfit_style)
if fill_individual:
for peak in gr_fit_ind:
plt.fill_between(rfine, gr_fit_baseline, peak, **gind_style)
if show_residual:
plt.plot(r, gr_res + resbase, "r-", **gres_style)
plt.plot((xlo, xhi), 2 * [resbase], "k:")
# Format ax_data
plt.xlim(xlo, xhi)
plt.ylim(ylo, yhi)
plt.xlabel(userxlabel)
plt.ylabel(userylabel)
ax_data.xaxis.set_minor_locator(plt.MultipleLocator(1))
# ax_data.yaxis.set_minor_locator(plt.MultipleLocator(np.max([1,int((yhi-ylo)/20)])))
ax_data.yaxis.set_label_position("left")
ax_data.yaxis.tick_left()
ax_data.yaxis.set_ticks_position("both")
# Remove labels above where insets begin
# ax_data.yaxis.set_ticklabels([str(int(loc)) for loc in ax_data.yaxis.get_majorticklocs() if loc < datatop])
ax_data.yaxis.set_ticks(
[
loc
for loc in ax_data.yaxis.get_majorticklocs()
if (loc < datatop and loc >= ylo)
]
)
# Dataset label
if datalabel is not None:
dl = plt.text(
datalabelx,
datalabeltop,
datalabel,
ha="left",
va="top",
transform=ax_data.transAxes,
weight="bold",
)
else:
dl = None
figdict["datalabel"] = dl
# Create new x axis at bottom edge of compare inset
ax_data.axis["top"].set_visible(False)
ax_data.axis["newtop"] = ax_data.new_floating_axis(
0, datatop, axis_direction="bottom"
) # "top" bugged?
ax_data.axis["newtop"].toggle(all=False, ticks=True)
ax_data.axis["newtop"].major_ticks.set_tick_out(True)
ax_data.axis["newtop"].minor_ticks.set_tick_out(True)
# New y-axis label, since AxisLabel positions cannot be set manually.
# The original label is invisible, but we use its (dynamic) x position
# to update the new label, which we define have the correct y position.
# A bit of a tradeoff for the nice insets and ability to define new axes.
newylabel = plt.text(
-0.1,
0.5 * (datatop - ylo) / (yhi - ylo),
userylabel,
ha="center",
va="center",
rotation="vertical",
transform=ax_data.transAxes,
)
labeldict[fig] = newylabel # so we can find the correct text object
fig.canvas.mpl_connect(
"draw_event", on_draw
) # original label invisibility and updating
# Compare extracted (and ideal, if provided) peak positions clearly.
if cmp_height > 0:
ax_cmp = inset_axes(
ax_data,
width="100%",
height="%s%%" % cmp_height,
loc=2,
bbox_to_anchor=(0.0, -0.01 * (top_offset + dg_height), 1, 1),
bbox_transform=ax_data.transAxes,
borderpad=0,
)
figdict["cmp"] = ax_cmp
plt.axes(ax_cmp)
comparepositions(
ext,
ip,
ep_style=ep_style,
ip_style=ip_style,
yideal_label=yideal_label,
yext_label=yext_label,
)
plt.xlim(xlo, xhi)
ax_cmp.set_xticks([])
# Show how extracted peak positions change as dg is changed
if dg_height > 0:
ax_dg = inset_axes(
ax_data,
width="100%",
height="%s%%" % dg_height,
loc=2,
bbox_to_anchor=(0, -0.01 * top_offset, 1, 1),
bbox_transform=ax_data.transAxes,
borderpad=0,
)
figdict["dg"] = ax_dg
plt.axes(ax_dg)
dgkwds = {}
if "scale" in kwds:
dgkwds["scale"] = kwds["scale"]
if "dgmin" in kwds:
dgkwds["dgmin"] = kwds["dgmin"]
if "dgmax" in kwds:
dgkwds["dgmax"] = kwds["dgmax"]
dgseries(stability, base=0, pmin=r[0], pmax=r[-1], **dgkwds)
plt.xlim(xlo, xhi)
ax_dg.xaxis.set_major_locator(plt.NullLocator())
ax_dg.yaxis.set_major_locator(plt.MaxNLocator(3))
plt.ylabel(r"$\delta$g")
# Annotate the actual dg shown
if show_annotation:
dg = np.mean(ext.error_cluster) * scale
dgstr = dgformatstr % dg
if "dgformatpost" in kwds: # post-processing on dg annotation
dgstr = kwds["dgformatpost"](dgstr)
if len(ext.model) > 0:
xpos = np.mean([xlo, ext.model[0]["position"]]) # OK for now.
else:
xpos = xlo + 0.1 * (xhi - xlo)
if dg_height > 0 and cmp_height > 0:
# Arrow, text in compare distances line
ylo2, yhi2 = ax_dg.get_ylim()
if ip is not None:
ypos = ylo2 - 0.25 * cmp_height / dg_height * (yhi2 - ylo2)
else:
ypos = ylo2 - 0.5 * cmp_height / dg_height * (yhi2 - ylo2)
plt.annotate(
dgstr,
xy=(xlo, dg),
xycoords="data",
va="center",
ha="center",
xytext=(xpos, ypos),
textcoords="data",
size=8,
color="green",
arrowprops=dict(
arrowstyle="->",
connectionstyle="angle,angleA=90,angleB=0,rad=10",
color="green",
),
)
elif dg_height > 0:
# Arrow, and text located somewhere in main plot region
# Must change axes
pass
elif cmp_height > 0:
# No arrow, text in compare distances line
# Must change axes
plt.axes(ax_cmp)
ylo2, yhi2 = ax_cmp.get_ylim()
ypos = yhi2 / 2.0
plt.text(xpos, ypos, dgstr, va="center", ha="center", size=8, color="green")
else:
# Text only in main plot region
# Must change axes
pass
plt.draw()
return figdict
# Bit of a kluge to make sure the label on the y-axis
# is placed correctly. The "invisiblelabel" has correct
# x-position, but it's y-position cannot be manually set.
# The visiblelabel has correct y-position, and we update
# its x-position based on invisiblelabel. Of course,
# invisiblelabel must be temporarily made visible to update
# its values.
_lastxpos = {}
def on_draw(event):
global _lastxpos
fig = event.canvas.figure
ax_main = fig.get_axes()[0]
invisiblelabel = ax_main.axis["left"].label
invisiblelabel.set_visible(True)
visiblelabel = labeldict[fig]
bbox = invisiblelabel.get_window_extent(invisiblelabel._renderer)
bbox = bbox.inverse_transformed(ax_main.transAxes)
bbox = bbox.get_points()
xpos = np.mean(np.transpose(bbox)[0])
# This, and the whole lastxpos business, is so label is properly
# updated when using the Agg backend to create a .png. (at least in
# matplotlib 1.1.0) For some reason the invisible label is not set
# correctly when drawn with that backend unless redrawn at least once.
# If it is kept visible the whole time this problem doesn't occur.
# This problem doesn't occur onscreen (TkAgg) or printing PDFs, and
# didn't occur in matplotlib 1.0.0.
if abs(xpos - _lastxpos.get(fig, 0)) > 0.001:
_lastxpos[fig] = xpos
plt.draw()
else:
_lastxpos[fig] = xpos
invisiblelabel.set_visible(False)
xpos_old = visiblelabel.get_position()[0]
if abs(xpos - xpos_old) > 0.001:
labeldict[fig].set_x(xpos)
plt.draw()
return
def readcompare(filename):
"""Returns a list of distances read from filename, otherwise None."""
from diffpy.srmise.srmiseerrors import SrMiseDataFormatError, SrMiseFileError
# TODO: Make this safer
try:
datastring = open(filename, "rb").read()
except Exception as err:
raise err
import re
res = re.search(r"^[^#]", datastring, re.M)
if res:
datastring = datastring[res.end() :].strip()
distances = []
try:
for line in datastring.split("\n"):
distances.append(float(line))
except (ValueError, IndexError) as err:
print("Could not read distances from '%s'. Ignoring file." % filename)
if len(distances) == 0:
return None
else:
return distances
def main():
# configure options parsing
usage = (
"%prog srmise_file [options]\n"
"srmise_file can be an extraction file saved by SrMise, "
"or a data file saved by PeakStability."
)
descr = (
"A very basic tool for somewhat prettier plotting than provided by "
"the basic SrMise classes. Can be used to compare peak positions "
"with those from a list.\n"
"NOTE: At this time the utility only works with peaks extracted using diffpy.srmise.PDFPeakExtraction."
)
parser = optparse.OptionParser(usage=usage, description=descr)
parser.add_option(
"--compare",
type="string",
help="Compare extracted distances to distances listed (1/line) in this file.",
)
parser.add_option(
"--model",
type="int",
help="Plot given model from set. Ignored if srmise_file is not a PeakStability file.",
)
parser.add_option(
"--show", action="store_true", help="execute pylab.show() blocking call"
)
parser.add_option(
"-o", "--output", type="string", help="save plot to the specified file"
)
parser.add_option(
"--format", type="string", default="eps", help="output format for plot saving"
)
parser.allow_interspersed_args = True
opts, args = parser.parse_args(sys.argv[1:])
if len(args) != 1:
parser.error("Exactly one argument required. \n" + usage)
filename = args[0]
if filename is not None:
toplot = PDFPeakExtraction()
try:
toplot.read(filename)
except Exception:
toplot = PeakStability()
try:
toplot.load(filename)
except Exception:
print(
"File '%s' is not a .srmise or PeakStability data file." % filename
)
return
if opts.model is not None:
try:
toplot.setcurrent(opts.model)
except Exception:
print("Ignoring model, %s is not a PeakStability file." % filename)
distances = None
if opts.compare is not None:
# use baseline from existing file
distances = readcompare(opts.compare)
setfigformat(figsize=(6.0, 4.0))
figdict = makeplot(toplot, distances)
if opts.output:
plt.savefig(opts.output, format=opts.format, dpi=600)
if opts.show:
plt.show()
else:
plt.draw()
return
if __name__ == "__main__":
main()