forked from diffpy/diffpy.srmise
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnanospherical.py
261 lines (224 loc) · 9.19 KB
/
nanospherical.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
##############################################################################
#
# SrMise by Luke Granlund
# (c) 2014 trustees of the Michigan State University.
# All rights reserved.
#
# File coded by: Luke Granlund
#
# See LICENSE.txt for license information.
#
##############################################################################
import logging
import matplotlib.pyplot as plt
import numpy as np
import diffpy.srmise.srmiselog
from diffpy.srmise.baselines.base import BaselineFunction
from diffpy.srmise.srmiseerrors import SrMiseEstimationError
logger = logging.getLogger("diffpy.srmise")
class NanoSpherical(BaselineFunction):
"""Methods for evaluation of baseline of spherical nanoparticle of uniform density.
Allowed formats are
internal: [scale, radius]
Given nanoparticle radius R, the baseline is -scale*r*(1-(3r)/(4R)+(r^3)/(16*R^3)) in the
interval (0, abs(R)), and 0 elsewhere. Internally, both scale and radius are unconstrained,
but negative values are mapped to their physically meaningful positive equivalents.
The expression in parentheses is gamma_0(r) for a sphere. For a well normalized PDF the
scale factor is 4*pi*rho_0, where rho_r is the nanoparticle density.
gamma_0(r) Reference:
Guinier et. al. (1955). Small-angle Scattering from X-rays. New York: John Wiley & Sons, Inc.
"""
def __init__(self, Cache=None):
"""Initialize a spherical nanoparticle baseline.
Parameters
Cache - A class (not instance) which implements caching of BaseFunction
evaluations.
"""
# Define parameterdict
parameterdict = {"scale": 0, "radius": 1}
formats = ["internal"]
default_formats = {"default_input": "internal", "default_output": "internal"}
metadict = {}
BaselineFunction.__init__(
self, parameterdict, formats, default_formats, metadict, None, Cache
)
#### Methods required by BaselineFunction ####
# def estimate_parameters(self, r, y):
# """Estimate parameters for spherical baseline. (Not implemented!)
#
# Parameters
# r - array along r from which to estimate
# y - array along y from which to estimate
#
# Returns Numpy array of parameters in the default internal format.
# Raises NotImplementedError if estimation is not implemented for this
# degree, or SrMiseEstimationError if parameters cannot be estimated for
# any other reason.
# """
# if len(r) != len(y):
# emsg = "Arrays r, y must have equal length."
# raise ValueError(emsg)
def _jacobianraw(self, pars, r, free):
"""Return the Jacobian of the spherical baseline.
Parameters
pars - Sequence of parameters for a spherical baseline
pars[0] = scale
pars[1] = radius
r - sequence or scalar over which pars is evaluated.
free - sequence of booleans which determines which derivatives are
needed. True for evaluation, False for no evaluation.
"""
if len(pars) != self.npars:
emsg = "Argument pars must have " + str(self.npars) + " elements."
raise ValueError(emsg)
if len(free) != self.npars:
emsg = "Argument free must have " + str(self.npars) + " elements."
raise ValueError(emsg)
jacobian = [None for p in range(self.npars)]
if (free == False).sum() == self.npars:
return jacobian
if np.isscalar(r):
if r <= 0.0 or r >= 2.0 * pars[1]:
if free[0]:
jacobian[0] = 0.0
if free[1]:
jacobian[1] = 0.0
else:
if free[0]:
jacobian[0] = self._jacobianrawscale(pars, r)
if free[1]:
jacobian[1] = self._jacobianrawradius(pars, r)
else:
s = self._getdomain(pars, r)
if free[0]:
jacobian[0] = np.zeros(len(r))
jacobian[0][s] = self._jacobianrawscale(pars, r[s])
if free[1]:
jacobian[1] = np.zeros(len(r))
jacobian[1][s] = self._jacobianrawradius(pars, r[s])
return jacobian
def _jacobianrawscale(self, pars, r):
"""Return partial Jacobian wrt scale without bounds checking.
Parameters
pars - Sequence of parameters for a spherical baseline
pars[0] = scale
pars[1] = radius
r - sequence or scalar over which pars is evaluated.
"""
s = np.abs(pars[0])
R = np.abs(pars[1])
rdivR = r / R
# From abs'(s) in derivative, which is equivalent to sign(s) except at 0 where it
# is undefined. Since s=0 is equivalent to the absence of a nanoparticle, sign will
# be fine.
sign = np.sign(pars[1])
return -sign * r * (1 - (3.0 / 4.0) * rdivR + (1.0 / 16.0) * rdivR**3)
def _jacobianrawradius(self, pars, r):
"""Return partial Jacobian wrt radius without bounds checking.
Parameters
pars - Sequence of parameters for a spherical baseline
pars[0] = scale
pars[1] = radius
r - sequence or scalar over which pars is evaluated.
"""
s = np.abs(pars[0])
R = np.abs(pars[1])
# From abs'(R) in derivative, which is equivalent to sign(R) except at 0 where it
# is undefined. Since R=0 is a singularity anyway, sign will be fine.
sign = np.sign(pars[1])
return sign * s * (3 * r**2 * (r**2 - 4 * R**2)) / (16 * R**4)
def _transform_parametersraw(self, pars, in_format, out_format):
"""Convert parameter values from in_format to out_format.
Parameters
pars - Sequence of parameters
in_format - A format defined for this class
out_format - A format defined for this class
Defined Formats
internal - [scale, radius]
"""
temp = np.array(pars)
# Convert to intermediate format "internal"
if in_format == "internal":
# Map both scale and radius to their positive equivalents
temp[0] = np.abs(temp[0])
temp[1] = np.abs(temp[1])
else:
raise ValueError(
"Argument 'in_format' must be one of %s." % self.parformats
)
# Convert to specified output format from "internal" format.
if out_format == "internal":
pass
else:
raise ValueError(
"Argument 'out_format' must be one of %s." % self.parformats
)
return temp
def _valueraw(self, pars, r):
"""Return value of spherical baseline for the given parameters and r values.
Outside the interval [0, radius] the baseline is 0.
Parameters
pars - Sequence of parameters for a spherical baseline
pars[0] = scale
pars[1] = radius
r - sequence or scalar over which pars is evaluated.
"""
if len(pars) != self.npars:
emsg = "Argument pars must have " + str(self.npars) + " elements."
raise ValueError(emsg)
if np.isscalar(r):
if r <= 0.0 or r >= 2.0 * pars[1]:
return 0.0
else:
return self._valueraw2(pars, r)
else:
out = np.zeros(len(r))
s = self._getdomain(pars, r)
out[s] = self._valueraw2(pars, r[s])
return out
def _valueraw2(self, pars, r):
"""Return value of spherical baseline without bounds checking for given parameters and r values.
Parameters
pars - Sequence of parameters for a spherical baseline
pars[0] = scale
pars[1] = radius
r - sequence or scalar over which pars is evaluated.
"""
s = np.abs(pars[0])
R = np.abs(pars[1])
rdivR = r / R
return -s * r * (1 - (3.0 / 4.0) * rdivR + (1.0 / 16.0) * rdivR**3)
def _getdomain(self, pars, r):
"""Return slice object for which r > 0 and r < twice the radius"""
low = r.searchsorted(0.0, side="right")
high = r.searchsorted(2.0 * pars[1], side="left")
return slice(low, high)
def getmodule(self):
return __name__
# end of class NanoSpherical
# simple test code
if __name__ == "__main__":
f = NanoSpherical()
r = np.arange(-5, 10)
pars = np.array([-1.0, 7.0])
free = np.array([False, True])
print("Testing nanoparticle spherical baseline")
print("Scale: %f, Radius: %f" % (pars[0], pars[1]))
print("-----------------------------------------")
val = f._valueraw(pars, r)
jac = f._jacobianraw(pars, r, free)
outjac = [j if j is not None else [None] * len(r) for j in jac]
print(
"r".center(10),
"value".center(10),
"jac(scale)".center(10),
"jac(radius)".center(10),
)
for tup in zip(r, val, *outjac):
for t in tup:
if t is None:
print("%s" % None).ljust(10),
else:
print("% .3g" % t).ljust(10),
print