forked from diffpy/diffpy.srmise
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaicc.py
153 lines (114 loc) · 5.74 KB
/
aicc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python
##############################################################################
#
# SrMise by Luke Granlund
# (c) 2014 trustees of the Michigan State University
# (c) 2024 trustees of Columbia University in the City of New York
# All rights reserved.
#
# File coded by: Luke Granlund
#
# See LICENSE.txt for license information.
#
##############################################################################
import logging
import numpy as np
import diffpy.srmise.srmiselog
from diffpy.srmise.modelevaluators.base import ModelEvaluator
from diffpy.srmise.srmiseerrors import SrMiseModelEvaluatorError
logger = logging.getLogger("diffpy.srmise")
class AICc(ModelEvaluator):
"""Evaluate and compare models with the AICc statistic.
Akaike's Information Criterion w/ 2nd order correction for small sample
sizes (AICc) is a method for comparing statistical models which balances
raw goodness-of-fit with model parsimony. Assuming the uncertainties are
independent normal random variables the AICc has the special form
implemented by this class:
AICc = chi^2 + 2*k + 2*k*(k+1)/(n-k-1)
where chi^2 is the chi-squared statistic, k is the number of free
parameters in the model, and n is the number of data points.
Lower values of the AICc imply a better model, but note that the value of
the statistic has no absolute interpretation, and only differences between
two models with the same observed values (and uncertainties) have meaning.
For further details see:
Burnham, K. P. and Anderson, D. R. "Model selection and Multimodel
Inference: A Practical Information Theoretic Approach." Springer-Verlag,
2002.
"""
def __init__(self):
""" """
ModelEvaluator.__init__(self, "AICc", False)
return
def evaluate(self, fit, count_fixed=False, kshift=0):
"""Return quality of fit for given ModelCluster using AICc (Akaike's Information Criterion
with 2nd order correction for small sample size).
Parameters
fit: A ModelCluster
count_fixed: Whether fixed parameters are considered.
kshift: (0) Treat the model has having this many additional
parameters. Negative values also allowed."""
# Number of parameters. By default, fixed parameters are ignored.
k = fit.model.npars(count_fixed=count_fixed) + kshift
if k < 0:
emsg = "AICc not defined for negative number of parameters."
raise SrMiseModelEvaluatorError(emsg)
# Number of data points included in the fit
n = fit.size
if n < self.minpoints(k):
logger.warn("AICc.evaluate(): too few data to evaluate quality reliably.")
n = self.minpoints(k)
if self.chisq == None:
self.chisq = self.chi_squared(fit.value(), fit.y_cluster, fit.error_cluster)
self.stat = self.chisq + self.parpenalty(k, n)
return self.stat
def minpoints(self, npars):
"""Calculates the minimum number of points required to make an estimate of a model's quality."""
# From the denominator of AICc, it is clear that the first positive finite contribution to
# parameter cost is at n>=k+2
return npars + 2
def parpenalty(self, k, n):
"""Returns the cost for adding k parameters to the current model cluster."""
# Weight the penalty for additional parameters.
# If this isn't 1 there had better be a good reason.
fudgefactor = 1.0
return (2 * k + float(2 * k * (k + 1)) / (n - k - 1)) * fudgefactor
def growth_justified(self, fit, k_prime):
"""Returns whether adding k_prime parameters to the given model (ModelCluster) is justified given the current quality of the fit.
The assumption is that adding k_prime parameters will result in "effectively 0" chiSquared cost, and so adding it is justified
if the cost of adding these parameters is less than the current chiSquared cost. The validity of this assumption (which
depends on an unknown chiSquared value) and the impact of the errors used should be examined more thoroughly in the future.
"""
if self.chisq is None:
self.chisq = self.chi_squared(fit.value(), fit.y_cluster, fit.error_cluster)
k_actual = fit.model.npars(count_fixed=False) # parameters in current fit
k_test = k_actual + k_prime # parameters in prospective fit
n = fit.size # the number of data points included in the fit
# If there are too few points to calculate AICc with the requested number of parameter
# then clearly that increase in parameters is not justified.
if n < self.minpoints(k_test):
return False
# assert n >= self.minPoints(kActual) #check that AICc is defined for the actual fit
if n < self.minpoints(k_actual):
logger.warn("AICc.growth_justified(): too few data to evaluate quality reliably.")
n = self.minpoints(k_actual)
penalty = self.parpenalty(k_test, n) - self.parpenalty(k_actual, n)
return penalty < self.chisq
@staticmethod
def akaikeweights(aics):
"""Return sequence of Akaike weights for sequence of AICs"""
aic_stats = np.array([aic.stat for aic in aics])
aic_min = min(aic_stats)
return np.exp(-(aic_stats - aic_min) / 2.0)
@staticmethod
def akaikeprobs(aics):
"""Return sequence of Akaike probabilities for sequence of AICs"""
aic_weights = AICc.akaikeweights(aics)
return aic_weights / np.sum(aic_weights)
# end of class AICc
# simple test code
if __name__ == "__main__":
m1 = AICc()
m2 = AICc()
m1.stat = 20
m2.stat = 30
print(m2 > m1)