-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenetic_network.py
445 lines (388 loc) · 12.8 KB
/
genetic_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
#!/usr/bin/env python3
import pandas as pd
from math import floor, ceil, exp
import matplotlib.pyplot as plt
import random
class Chromosome:
"""Chromosome class.
Containerizes genes for chromosome.
Attributes:
genes : the weights of the network.
fit : the fitness of the chromosome.
"""
def __init__(self, genes, fit=None):
"""Chromosome constructor without fitness."""
# initialize weights from parameter
self.genes = genes
# if no argument passed as fitness
# take fitness from genes argument
# else init as fit argument
if fit is None:
network = initialize_network(self.genes)
self.fit = mse(network)
else:
self.fit = fit
def set_genes(self, genes):
"""Genes mutator method."""
self.genes = genes
# when setting genes subsequent times
# update the fitness
network = initialize_network(self.genes)
self.fit = mse(network)
def get_genes(self):
"""Genes accessor method."""
return self.genes
def get_fit(self):
"""Fitness accessor method."""
return self.fit
def __lt__(self, other):
"""Less-than operator overload."""
return self.fit < other.fit
def __getitem__(self, key):
"""List index operator overload."""
return self.genes[key]
def __len__(self):
"""List length operator overload."""
return len(self.genes)
def genetic_network(el_p, to_p, dim, epochs, pop_size, cr, mr):
"""Genetic Neural Network training function.
Parameters:
el_p : the proportion of elites
to_p : the proportion of tournament
dim : dimensionality of network.
epochs : how many generations to run.
pop_size : the population size.
cr : crossover rate.
mr : mutation rate.
Returns:
A trained neural network.
"""
# initialize network as initially random
population = initialize_population(pop_size, dim)
for e in range(1, epochs+1):
# sort the population by fitness
population.sort()
# get fitness of network
MSE.append(population[0].get_fit())
# training accuracy of network
TRP.append(performance_measure(population[0].get_genes(), TRAIN))
# testing accuracy of network
TEP.append(performance_measure(population[0].get_genes(), TEST))
mating_pool = [] # init mating pool
# get elites from population
elites = elite_selection(population, el_p)
del population[:len(elites)] # remove elites
# find tournament and winner
t_winner = tournament_selection(population, to_p)
# add tournament victor and elites to mating pool
mating_pool.extend(elites)
mating_pool.append(t_winner)
# generate a new population based on mating pool
population = evolve(mating_pool, elites, pop_size, cr, mr)
mating_pool.clear() # clear mating pool for next gen
population.sort()
return initialize_network(population[0].get_genes())
def evolve(mating_pool, elites, pop_size, cr, mr):
"""Evolves population based on genetic operators.
Parameters:
mating_pool : where to select parents from.
elites : previously found elites.
pop_size : the population size.
cr : crossover rate.
mr : mutation rate.
Returns:
A new population of offspring from mating pool.
"""
new_population = [] # store new population as list
new_population += elites # add elites verbatim
while len(new_population) < pop_size: # while population isn't at max size
# get both parents indices
p_a_idx = random.randrange(len(mating_pool))
p_b_idx = random.randrange(len(mating_pool))
# we don't mind parents having identical genes but we don't
# want the parents to use the same index. Parent A can be
# equal to Parent B, but Parent A cannot be Parent B
if p_a_idx == p_b_idx:
continue
# get the parents from indices
parent_a = mating_pool[p_a_idx]
parent_b = mating_pool[p_b_idx]
# find children using crossover
child_a, child_b = crossover(parent_a, parent_b, cr)
# mutate each child
child_a = mutation(child_a, mr)
child_b = mutation(child_b, mr)
# add children to population
new_population += [child_a, child_b]
return new_population
def crossover(parent_a, parent_b, cr):
"""Two-point crossover operator.
Parameters:
parent_a : the first parent.
parent_b : the second parent.
cr : the crossover chance.
Returns:
Two child chromosomes as a product of both parents.
"""
# only perform crossover based on the crossover rate
if random.uniform(0.00, 1.00) >= cr:
child_a = Chromosome(parent_a.get_genes(), parent_a.get_fit())
child_b = Chromosome(parent_b.get_genes(), parent_b.get_fit())
return child_a, child_b
genes_a, genes_b = [], []
# find pivot points at random 1..n-1
pivot_a = random.randint(1, len(parent_a)-1)
# second pivot is between pivot_a..n-1
pivot_b = random.randint(pivot_a, len(parent_a)-1)
for i in range(0, len(parent_a)):
# before first pivot, use genes from one parent
if i < pivot_a:
genes_a.append(parent_a[i])
genes_b.append(parent_b[i])
# before second pivot, use genes from second parent
elif i < pivot_b:
genes_a.append(parent_b[i])
genes_b.append(parent_a[i])
# after second pivot, use genes from first parent again
else:
genes_a.append(parent_a[i])
genes_b.append(parent_b[i])
return Chromosome(genes_a), Chromosome(genes_b)
def mutation(child, mr):
"""Mutation operator.
Parameters:
child : the chromosome to mutate.
mr : the mutation chance.
Returns:
A mutated child.
"""
# the new genes to make
genes = [gene for gene in child.get_genes()]
# gene average
avg = sum(genes) / len(genes)
for i in range(len(genes)):
# only perform mutation based on the mutation rate
if random.uniform(0.00, 1.00) <= mr:
# update that axes with random position
genes[i] = random.gauss(mu=avg, sigma=0.9)
# we don't need to update the fitness if the gene
# hasn't changed, so only update genes if they've changed
if genes != child.get_genes():
child.set_genes(genes)
return child
def initialize_population(size, dim):
"""Initializes a random population.
Parameters:
size : the size of the population.
dim : the dimensionality of the problem
Returns:
A random population of that many points.
"""
population = [] # population stored as a list
for _ in range(size): # for the size of the population
genes = [random.uniform(-0.50, 0.50) for _ in range(dim)] # random genes
chromosome = Chromosome(genes) # create the chromosome
population.append(chromosome) # add to population
return population
def elite_selection(population, percent):
"""Elite selection function.
Stores elites to bring into the next generation and mating pool.
Parameters:
population : the population to take elites from.
percent : the proportion of the population to consider elites.
Returns:
A list of elite solutions.
"""
elites = []
# grab percent% best individuals
for i in range(ceil(len(population)*percent)):
elites.append(population[i]) # and append to elites
return elites
def tournament_selection(population, percent):
"""Tournament selection function.
Creates a tournament of random individuals and returns the best.
Parameters:
population : the population to take tournament from.
percent : the proportion of the population who enters the tournament.
Returns:
Best fit individual from tournament.
"""
tournament = []
# grab percent% random individuals
for i in range(ceil(len(population)*percent)):
random_idx = random.randint(0, len(population)-1)
tournament.append(population.pop(random_idx)) # append to tournament
tournament.sort() # sort by fitness
return tournament[0] # return best fit from tournament
def initialize_network(c):
"""Neural network initializer.
Parameters:
c : the chromosome to encode into the network.
Returns:
The n-h-o neural network.
"""
n, h, o = FEATURES, HIDDEN_SIZE, CLASSES
chr = iter(c) # make iterator from c
neural_network = [] # initially an empty list
# there are (n * h) connections between input layer and hidden layer
neural_network.append([[next(chr) for i in range(n+1)] for j in range(h)])
# there are (h * o) connections between hidden layer and output layer
neural_network.append([[next(chr) for i in range(h+1)] for j in range(o)])
return neural_network
def feed_forward(network, example):
"""Feedforward method. Feeds data forward through network.
Parameters:
network : the neural network.
example : an example of data to feed forward.
Returns:
The output of the forward pass.
"""
layer_input, layer_output = example, []
for layer in network:
for neuron in layer:
# sum the weight with inputs
summ = summing_function(neuron, layer_input)
# activate the sum, append output to outputs
layer_output.append(activation_function(summ))
# inputs become outputs of previous layer
layer_input, layer_output = layer_output, []
return layer_input # return the final output
def summing_function(weights, inputs):
"""Sums the synapse weights with inputs and bias.
Parameters:
weights : synaptic weights.
inputs : a vector of inputs.
Returns:
The aggregate of inputs times weights, plus bias.
"""
# bias is the final value in the weight vector
bias = weights[-1]
summ = 0.00 # to sum
for i in range(len(weights)-1):
# aggregate the weights with input values
summ += (weights[i] * float(inputs[i]))
return summ + bias
def activation_function(z):
"""ReLU activation function.
Parameters:
z : summed output of neuron.
Returns:
The neuron activation based on the summed output.
"""
return z if z >= 0 else 0
def performance_measure(chromosome, data):
"""Measures accuracy of the network using classification error.
Parameters:
chromosome : the chromosome to test.
data : a set of data examples.
Returns:
A percentage of correct classifications.
"""
network = initialize_network(chromosome)
correct, total = 0, 0
for example in data:
# check to see if the network output matches target output
if check_output(network, example) == float(example[-1]):
correct += 1
total += 1
return 100*(correct / total)
def check_output(network, example):
"""Compares network output to actual output.
Parameters:
network : the neural network.
example : an example of data.
Returns:
The class the example belongs to (based on network guess).
"""
output = feed_forward(network, example)
return output.index(max(output))
def sse(actual, target):
"""Sum of Squared Error.
Parameters:
actual : network output.
target : example target output.
Returns:
The sum of squared error of the network for an example.
"""
summ = 0.00
for i in range(len(actual)):
summ += (actual[i] - target[i])**2
return summ
def mse(network):
"""Mean Squared Error.
Parameters:
network : the neural network to test.
"""
training = TRAIN
summ = 0.00
# for each training example
for example in training:
# populate a target vector
target = [0 for _ in range(CLASSES)]
# denote correct classification
target[int(example[-1])] = 1
# get actual output by feeding example through network
actual = feed_forward(network, example)
# sum up the sum of squared error
summ += sse(actual, target)
# MSE is just sum(sse)/number of examples
return summ / len(training)
def load_data(filename):
"""Loads CSV for splitting into training and testing data.
Parameters:
filename : the filename of the file to load.
Returns:
Two lists, each corresponding to training and testing data.
"""
# load into pandas dataframe
df = pd.read_csv(filename, header=None, dtype=float)
# normalize the data
for features in range(len(df.columns)-1):
df[features] = (df[features] - df[features].mean())/df[features].std()
train = df.sample(frac=0.70).fillna(0.00) # get training portion
test = df.drop(train.index).fillna(0.00) # remainder testing portion
return train.values.tolist(), test.values.tolist()
def plot_data():
"""Plots data.
Displays MSE, training accuracy, and testing accuracy over time.
"""
x = range(0, EPOCHS)
fig, ax2 = plt.subplots()
ax2.set_xlabel('Epoch')
ax2.set_ylabel('MSE', color='blue')
line, = ax2.plot(x, MSE, '-', c='blue', lw='1', label='MSE')
ax1 = ax2.twinx()
ax1.set_ylabel('Accuracy (%)', color='green')
line2, = ax1.plot(x, TRP, '-', c='green', lw='1', label='Training')
line3, = ax1.plot(x, TEP, ':', c='green', lw='1', label='Testing')
fig.tight_layout()
fig.legend(loc='center')
ax1.set_ylim(0, 101)
plt.show()
plt.clf()
if __name__ == '__main__':
# to store performance of network
MSE, TRP, TEP = [], [], []
# get training/testing data
TRAIN, TEST = load_data('../data/wheat.csv')
# count number of attributes
FEATURES = len(TRAIN[0][:-1])
# count number of unique classifications
CLASSES = len(list(set([c[-1] for c in (TRAIN+TEST)])))
# hidden layer size
HIDDEN_SIZE = 8
# chromosome size
CHROMOSOME_SIZE = (HIDDEN_SIZE * (FEATURES+1)) + \
(CLASSES * (HIDDEN_SIZE+1))
# population size
POP_SIZE = 100
# genetic operator chances
CROSS_RATE, MUTAT_RATE = 0.90, 0.05
# selection sizes
ELITE_PROPORTION, TOURN_PROPORTION = 0.05, 0.03
# how many epochs
EPOCHS = 200
NETWORK = genetic_network(ELITE_PROPORTION, TOURN_PROPORTION, \
CHROMOSOME_SIZE, EPOCHS, POP_SIZE, CROSS_RATE, MUTAT_RATE)
# plot the data
plot_data()