-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenetic_network_uc.py
214 lines (189 loc) · 6.22 KB
/
genetic_network_uc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python3
import pandas as pd
from math import floor, ceil, exp
import matplotlib.pyplot as plt
import random
class Chromosome:
def __init__(self, genes, fit=None):
self.genes = genes
if fit is None:
network = initialize_network(self.genes)
self.fit = mse(network)
else:
self.fit = fit
def set_genes(self, genes):
self.genes = genes
network = initialize_network(self.genes)
self.fit = mse(network)
def get_genes(self):
return self.genes
def get_fit(self):
return self.fit
def __lt__(self, other):
return self.fit < other.fit
def __getitem__(self, key):
return self.genes[key]
def genetic_network(el_p, to_p, dim, epochs, pop_size, cr, mr):
population = initialize_population(pop_size, dim)
for e in range(1, epochs+1):
population.sort()
MSE.append(population[0].get_fit())
TRP.append(performance_measure(population[0].get_genes(), TRAIN))
TEP.append(performance_measure(population[0].get_genes(), TEST))
mating_pool = []
elites = elite_selection(population, el_p)
del population[:len(elites)]
t_winner = tournament_selection(population, to_p)
mating_pool.extend(elites)
mating_pool.append(t_winner)
population = evolve(mating_pool, elites, pop_size, cr, mr)
mating_pool.clear()
population.sort()
return initialize_network(population[0].get_genes())
def evolve(mating_pool, elites, pop_size, cr, mr):
new_population = []
new_population += elites
while len(new_population) < pop_size:
p_a_idx = random.randrange(len(mating_pool))
p_b_idx = random.randrange(len(mating_pool))
if p_a_idx == p_b_idx:
continue
parent_a = mating_pool[p_a_idx]
parent_b = mating_pool[p_b_idx]
child_a, child_b = crossover(parent_a, parent_b, cr)
child_a = mutation(child_a, mr)
child_b = mutation(child_b, mr)
new_population += [child_a, child_b]
return new_population
def crossover(parent_a, parent_b, cr):
if random.uniform(0.00, 1.00) >= cr:
child_a = Chromosome(parent_a.get_genes(), parent_a.get_fit())
child_b = Chromosome(parent_b.get_genes(), parent_b.get_fit())
return child_a, child_b
genes_a, genes_b = [], []
pivot_a = random.randint(1, len(parent_a.get_genes())-1)
pivot_b = random.randint(pivot_a, len(parent_a.get_genes())-1)
for i in range(0, len(parent_a.get_genes())):
if i < pivot_a:
genes_a.append(parent_a[i])
genes_b.append(parent_b[i])
elif i < pivot_b:
genes_a.append(parent_b[i])
genes_b.append(parent_a[i])
else:
genes_a.append(parent_a[i])
genes_b.append(parent_b[i])
return Chromosome(genes_a), Chromosome(genes_b)
def mutation(child, mr):
genes = [gene for gene in child.get_genes()]
avg = sum(genes) / len(genes)
for i in range(len(genes)):
if random.uniform(0.00, 1.00) <= mr:
genes[i] = random.gauss(mu=avg, sigma=0.9)
if genes != child.get_genes():
child.set_genes(genes)
return child
def initialize_population(size, dim):
population = []
for _ in range(size):
genes = [random.uniform(-0.50, 0.50) for _ in range(dim)]
chromosome = Chromosome(genes)
population.append(chromosome)
return population
def elite_selection(population, percent):
elites = []
for i in range(ceil(len(population)*percent)):
elites.append(population[i])
return elites
def tournament_selection(population, percent):
tournament = []
for i in range(ceil(len(population)*percent)):
random_idx = random.randint(0, len(population)-1)
tournament.append(population.pop(random_idx))
tournament.sort()
return tournament[0]
def initialize_network(c):
n, h, o = FEATURES, HIDDEN_SIZE, CLASSES
chr = iter(c)
neural_network = []
neural_network.append([[next(chr) for i in range(n+1)] for j in range(h)])
neural_network.append([[next(chr) for i in range(h+1)] for j in range(o)])
return neural_network
def feed_forward(network, example):
layer_input, layer_output = example, []
for layer in network:
for neuron in layer:
summ = summing_function(neuron, layer_input)
layer_output.append(activation_function(summ))
layer_input, layer_output = layer_output, []
return layer_input
def summing_function(weights, inputs):
bias = weights[-1]
summ = 0.00
for i in range(len(weights)-1):
summ += (weights[i] * float(inputs[i]))
return summ + bias
def activation_function(z):
return z if z >= 0 else 0
def performance_measure(chromosome, data):
network = initialize_network(chromosome)
correct, total = 0, 0
for example in data:
if check_output(network, example) == float(example[-1]):
correct += 1
total += 1
return 100*(correct / total)
def check_output(network, example):
output = feed_forward(network, example)
return output.index(max(output))
def sse(actual, target):
summ = 0.00
for i in range(len(actual)):
summ += (actual[i] - target[i])**2
return summ
def mse(network):
training = TRAIN
summ = 0.00
for example in training:
target = [0 for _ in range(CLASSES)]
target[int(example[-1])] = 1
actual = feed_forward(network, example)
summ += sse(actual, target)
return summ / len(training)
def load_data(filename):
df = pd.read_csv(filename, header=None, dtype=float)
for features in range(len(df.columns)-1):
df[features] = (df[features] - df[features].mean())/df[features].std()
train = df.sample(frac=0.70).fillna(0.00)
test = df.drop(train.index).fillna(0.00)
return train.values.tolist(), test.values.tolist()
def plot_data():
x = range(0, EPOCHS)
fig, ax2 = plt.subplots()
ax2.set_xlabel('Epoch')
ax2.set_ylabel('MSE', color='blue')
line, = ax2.plot(x, MSE, '-', c='blue', lw='1', label='MSE')
ax1 = ax2.twinx()
ax1.set_ylabel('Accuracy (%)', color='green')
line2, = ax1.plot(x, TRP, '-', c='green', lw='1', label='Training')
line3, = ax1.plot(x, TEP, ':', c='green', lw='1', label='Testing')
fig.tight_layout()
fig.legend(loc='center')
ax1.set_ylim(0, 101)
plt.show()
plt.clf()
if __name__ == '__main__':
MSE, TRP, TEP = [], [], []
TRAIN, TEST = load_data('../data/wheat.csv')
FEATURES = len(TRAIN[0][:-1])
CLASSES = len(list(set([c[-1] for c in (TRAIN+TEST)])))
HIDDEN_SIZE = 8
CHROMOSOME_SIZE = (HIDDEN_SIZE * (FEATURES+1)) + \
(CLASSES * (HIDDEN_SIZE+1))
POP_SIZE = 100
CROSS_RATE, MUTAT_RATE = 0.90, 0.05
ELITE_PROPORTION, TOURN_PROPORTION = 0.05, 0.03
EPOCHS = 200
NETWORK = genetic_network(ELITE_PROPORTION, TOURN_PROPORTION, \
CHROMOSOME_SIZE, EPOCHS, POP_SIZE, CROSS_RATE, MUTAT_RATE)
plot_data()