-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbackprop_network.py
286 lines (249 loc) · 9.03 KB
/
backprop_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/env python3
import random # for shuffling data and weight init
import csv # for reading data file
import matplotlib.pyplot as plt # for plotting
from math import exp, floor, ceil
def stochastic_gradient_descent(network, classes, training_data):
"""Training function for neural network.
Performs feed-forward, backpropagation, and update weight functions.
Parameters:
network : the neural network.
classes : the number of classes for the data.
training_data : data to train the network on.
"""
for _ in range(0, EPOCHS):
# there is no temporal delta and therefore no momentum for the first
# training example, so skip that step later for first example
first_example = True
total_error = 0.00
for example in training_data:
# skip if not first example; keep track of prior example delta
temporal_delta = [neuron['d'] \
for layer in network for neuron in layer] \
if not first_example else None
# create a list of possible outputs
outputs = [0 for _ in range(classes)]
outputs[int(example[-1])] = 1 # denote correct classification
# get actual output from feed forward pass. Feeding forward will
# also initialize network neuron outputs to be used in backprop
actual = feed_forward(network, example)
total_error += sse(actual, outputs) # aggregate error
# perform backpropagation to propagate error through network
backpropagate(network, outputs)
# update weights based on network params and neuron contents
update_weights(network, example, temporal_delta)
# to not clobber neural outputs, reset them to zero
reset_neurons(network)
first_example = False # now we can consider momentum
# append results for this epoch to global lists to make plots
MSE.append(total_error/len(training_data))
TRP.append(performance_measure(NETWORK, TRAIN))
TEP.append(performance_measure(NETWORK, TEST))
def feed_forward(network, example):
"""Feedforward method. Feeds data forward through network.
Parameters:
network : the neural network.
example : an example of data to feed forward.
Returns:
The output of the forward pass.
"""
layer_input, layer_output = example, []
for layer in network:
for neuron in layer:
# sum the weight with inputs
summ = summing_function(neuron['w'], layer_input)
# activate the sum, store output
neuron['o'] = activation_function(summ)
# append output to outputs
layer_output.append(neuron['o'])
# inputs become outputs of previous layer
layer_input, layer_output = layer_output, []
return layer_input
def backpropagate(network, example):
"""Backpropagation function. Backpropagates error through network.
Parameters:
network : the neural network.
example : a training example.
"""
for i in range(len(network)-1, -1, -1): # for each reverse order layer
for j in range(len(network[i])): # for each neuron in the layer
err = 0.00
if i == len(network)-1: # if the output layer
# error is a function of what the output is versus the target
err = example[j] - network[i][j]['o']
else: # if an inner layer
summ = 0.00
# error is the sum of neuron weights times their deltas
for neuron in network[i+1]:
summ += neuron['w'][j] * neuron['d']
err = summ
# delta is amount of correction
network[i][j]['d'] = activation_derivative(network[i][j]['o']) * err
def reset_neurons(network):
"""Resets neural outputs to zero after each backprop pass.
Parameters:
network : the neural network.
"""
for layer in network:
for neuron in layer:
# we don't want to clobber the outputs later
# so reset after every example
neuron['o'] = 0
def update_weights(network, example, delta):
"""Function to update network weights.
Parameters:
network : the neural network.
example : a training example.
delta : temporal delta.
"""
for i in range(len(network)): # for each layer in network
# we update the weights in order of layers 0..n
# so we need either the example or the outputs of a layer
if i != 0: # if not first layer
# init t as neural outputs
t = [neuron['o'] for neuron in network[i-1]]
else: # if first layer
t = example[:-1] # init t as the training example attributes
# for each neuron in layer; zip with a length of network variable
# to access deltas
for neuron, d in zip(network[i], range(0, len(network[i]))):
for f in range(len(t)): # for each feature or output of t
# update weight based on learning rate term
neuron['w'][f] += LEARNING_RATE * float(t[f]) * neuron['d']
if delta is not None: # if there is a temporal delta
# update weight based on momentum rate term
neuron['w'][f] += MOMENTUM_RATE * delta[d]
# also update neural bias
neuron['w'][-1] += LEARNING_RATE * neuron['d']
def sse(actual, target):
"""Sum Square Error loss function.
Determines error of network.
Parameters:
actual : the actual output from the network.
target : the expected output from the network.
Returns:
The sum squared error of the network.
"""
summ = 0.00
for i in range(len(actual)):
summ += (actual[i] - target[i])**2
return summ
def activation_function(z):
"""
Parameters:
z : summed output of neuron.
Returns:
The neuron activation based on the summed output.
"""
return 1 / (1 + exp(-z))
def activation_derivative(z):
"""Derivative of logarithmic sigmoid function.
Parameters:
z : summing output.
Returns:
The differential of the neural output.
"""
return z * (1 - z)
def summing_function(weights, inputs):
"""Sums the synapse weights with inputs and bias.
Parameters:
weights : synaptic weights.
inputs : a vector of inputs.
Returns:
The aggregate of inputs times weights, plus bias.
"""
bias = weights[-1] # bias is the final value in the weight vector
summ = 0.00 # to sum
for i in range(len(weights)-1):
# aggregate the weights with input values
summ += (weights[i] * float(inputs[i]))
return summ + bias
def performance_measure(network, data):
"""Measures accuracy of the network using classification error.
Parameters:
network : the neural network.
data : a set of data examples.
Returns:
A percentage of correct classifications.
"""
correct, total = 0, 0
for example in data:
# check to see if the network output matches target output
if check_output(network, example) == float(example[-1]):
correct += 1
total += 1
return 100*(correct / total)
def check_output(network, example):
"""Compares network output to actual output.
Parameters:
network : the neural network.
example : an example of data.
Returns:
The class the example belongs to (based on network guess).
"""
output = feed_forward(network, example)
return output.index(max(output))
def initialize_network(n, h, o):
"""Neural network initializer.
The network will be structured as nested data structures, namely a list of
lists of dicts. As the algorithm continues, not only the weights will be
stored but also deltas, outputs, errors.
Parameters:
n : the number of input neurons.
h : the number of hidden neurons.
o : the number of output neurons.
Returns:
An n-h-o neural network as a list of list of dicts.
"""
def r(): # an inline function to generate randomly uniform numbers
return random.uniform(-0.50, 0.50)
neural_network = [] # initially an empty list
# there are (n * h) connections between input layer and hidden layer
# a 'w' will denote weights
neural_network.append([{'w':[r() for i in range(n+1)]} for j in range(h)])
# there are (h * o) connections between hidden layer and output layer
neural_network.append([{'w':[r() for i in range(h+1)]} for j in range(o)])
return neural_network
def load_data(filename):
"""Loads CSV for splitting into training and testing data.
Parameters:
filename : the filename of the file to load.
Returns:
Two lists, each corresponding to training and testing data.
"""
with open(filename, newline='\n') as csv_file: # open CSV
data = [] # store data as a master list
rows = csv.reader(csv_file, delimiter=',') # get each row
for row in rows: # for each row
data.append(row) # add to data list
random.shuffle(data) # randomize data order
training_data = data[:floor(len(data)*0.70)] # 70% split train
testing_data = data[-ceil(len(data)*0.30):] # 30% split test
return training_data, testing_data
def plot_data():
"""Plots data.
Displays MSE, training accuracy, and testing accuracy over time.
"""
x = range(0, EPOCHS)
fig, ax2 = plt.subplots()
ax2.set_xlabel('Epoch')
ax2.set_ylabel('MSE', color='blue')
line, = ax2.plot(x, MSE, '-', c='blue', lw='1', label='MSE')
ax1 = ax2.twinx()
ax1.set_ylabel('Accuracy', color='green')
line2, = ax1.plot(x, TRP, '-', c='green', lw='1', label='Training')
line3, = ax1.plot(x, TEP, ':', c='green', lw='1', label='Testing')
fig.tight_layout()
fig.legend(loc='center')
plt.show()
plt.clf()
if __name__ == '__main__':
TRAIN, TEST = load_data('../data/iris.csv')
FEATURES = len(TRAIN[0][:-1])
CLASSES = len(list(set([c[-1] for c in TRAIN])))
NETWORK = initialize_network(FEATURES, 5, CLASSES)
LEARNING_RATE, MOMENTUM_RATE = 0.100, 0.001
EPOCHS = 250
MSE, TRP, TEP = [], [], []
stochastic_gradient_descent(NETWORK, CLASSES, TRAIN)
plot_data()