-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbackprop_network_uc.py
145 lines (129 loc) · 4.77 KB
/
backprop_network_uc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python3
import random
import csv
import matplotlib.pyplot as plt
from math import exp, floor, ceil
def stochastic_gradient_descent(network, classes, training_data):
for _ in range(0, EPOCHS):
first_example = True
total_error = 0.00
for example in training_data:
temporal_delta = [neuron['d'] \
for layer in network for neuron in layer] \
if not first_example else None
outputs = [0 for _ in range(classes)]
outputs[int(example[-1])] = 1
actual = feed_forward(network, example)
total_error += sse(actual, outputs)
backpropagate(network, outputs)
update_weights(network, example, temporal_delta)
reset_neurons(network)
first_example = False
MSE.append(total_error/len(training_data))
TRP.append(performance_measure(NETWORK, TRAIN))
TEP.append(performance_measure(NETWORK, TEST))
def feed_forward(network, example):
layer_input, layer_output = example, []
for layer in network:
for neuron in layer:
summ = summing_function(neuron['w'], layer_input)
neuron['o'] = activation_function(summ)
layer_output.append(neuron['o'])
layer_input, layer_output = layer_output, []
return layer_input
def backpropagate(network, example):
for i in range(len(network)-1, -1, -1):
for j in range(len(network[i])):
err = 0.00
if i == len(network)-1:
err = example[j] - network[i][j]['o']
else:
summ = 0.00
for neuron in network[i+1]:
summ += neuron['w'][j] * neuron['d']
err = summ
network[i][j]['d'] = activation_derivative(network[i][j]['o']) * err
def reset_neurons(network):
for layer in network:
for neuron in layer:
neuron['o'] = 0
def update_weights(network, example, delta):
for i in range(len(network)):
if i != 0:
t = [neuron['o'] for neuron in network[i-1]]
else:
t = example[:-1]
for neuron, d in zip(network[i], range(0, len(network[i]))):
for f in range(len(t)):
neuron['w'][f] += LEARNING_RATE * float(t[f]) * neuron['d']
if delta is not None:
neuron['w'][f] += MOMENTUM_RATE * delta[d]
neuron['w'][-1] += LEARNING_RATE * neuron['d']
def sse(actual, target):
summ = 0.00
for i in range(len(actual)):
summ += (actual[i] - target[i])**2
return summ
def activation_function(z):
numerator = 1
denominator = 1 + exp(-z)
return numerator/denominator
def activation_derivative(z):
return z * (1 - z)
def summing_function(weights, inputs):
bias = weights[-1]
summ = 0.00
for i in range(len(weights)-1):
summ += (weights[i] * float(inputs[i]))
return summ + bias
def performance_measure(network, data):
correct, total = 0, 0
for example in data:
if check_output(network, example) == float(example[-1]):
correct += 1
total += 1
return 100*(correct / total)
def check_output(network, example):
output = feed_forward(network, example)
return output.index(max(output))
def initialize_network(n, h, o):
def r():
return random.uniform(-0.50, 0.50)
neural_network = []
neural_network.append([{'w':[r() for i in range(n+1)]} for j in range(h)])
neural_network.append([{'w':[r() for i in range(h+1)]} for j in range(o)])
return neural_network
def load_data(filename):
with open(filename, newline='\n') as csv_file:
data = []
rows = csv.reader(csv_file, delimiter=',')
for row in rows:
data.append(row)
random.shuffle(data)
training_data = data[:floor(len(data)*0.70)]
testing_data = data[-ceil(len(data)*0.30):]
return training_data, testing_data
def plot_data():
x = range(0, EPOCHS)
fig, ax2 = plt.subplots()
ax2.set_xlabel('Epoch')
ax2.set_ylabel('MSE', color='blue')
line, = ax2.plot(x, MSE, '-', c='blue', lw='1', label='MSE')
ax1 = ax2.twinx()
ax1.set_ylabel('Accuracy', color='green')
line2, = ax1.plot(x, TRP, '-', c='green', lw='1', label='Training')
line3, = ax1.plot(x, TEP, ':', c='green', lw='1', label='Testing')
fig.tight_layout()
fig.legend(loc='center')
plt.show()
plt.clf()
if __name__ == '__main__':
TRAIN, TEST = load_data('../data/iris.csv')
FEATURES = len(TRAIN[0][:-1])
CLASSES = len(list(set([c[-1] for c in TRAIN])))
NETWORK = initialize_network(FEATURES, 5, CLASSES)
LEARNING_RATE, MOMENTUM_RATE = 0.100, 0.001
EPOCHS = 200
MSE, TRP, TEP = [], [], []
stochastic_gradient_descent(NETWORK, CLASSES, TRAIN)
plot_data()