-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathskip_edge_gnn.py
238 lines (208 loc) · 8.72 KB
/
skip_edge_gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""Heterograph NN modules"""
import torch as th
import torch.nn as nn
from dgl.base import DGLError
class HeteroGraphConv(nn.Module):
r"""A generic module for computing convolution on heterogeneous graphs.
The heterograph convolution applies sub-modules on their associating
relation graphs, which reads the features from source nodes and writes the
updated ones to destination nodes. If multiple relations have the same
destination node types, their results are aggregated by the specified method.
If the relation graph has no edge, the corresponding module will not be called.
Examples
--------
Create a heterograph with three types of relations and nodes.
>>> import dgl
>>> g = dgl.heterograph({
... ('user', 'follows', 'user') : edges1,
... ('user', 'plays', 'game') : edges2,
... ('store', 'sells', 'game') : edges3})
Create a ``HeteroGraphConv`` that applies different convolution modules to
different relations. Note that the modules for ``'follows'`` and ``'plays'``
do not share weights.
>>> import dgl.nn.pytorch as dglnn
>>> conv = dglnn.HeteroGraphConv({
... 'follows' : dglnn.GraphConv(...),
... 'plays' : dglnn.GraphConv(...),
... 'sells' : dglnn.SAGEConv(...)},
... aggregate='sum')
Call forward with some ``'user'`` features. This computes new features for both
``'user'`` and ``'game'`` nodes.
>>> import torch as th
>>> h1 = {'user' : th.randn((g.number_of_nodes('user'), 5))}
>>> h2 = conv(g, h1)
>>> print(h2.keys())
dict_keys(['user', 'game'])
Call forward with both ``'user'`` and ``'store'`` features. Because both the
``'plays'`` and ``'sells'`` relations will update the ``'game'`` features,
their results are aggregated by the specified method (i.e., summation here).
>>> f1 = {'user' : ..., 'store' : ...}
>>> f2 = conv(g, f1)
>>> print(f2.keys())
dict_keys(['user', 'game'])
Call forward with some ``'store'`` features. This only computes new features
for ``'game'`` nodes.
>>> g1 = {'store' : ...}
>>> g2 = conv(g, g1)
>>> print(g2.keys())
dict_keys(['game'])
Call forward with a pair of inputs is allowed and each submodule will also
be invoked with a pair of inputs.
>>> x_src = {'user' : ..., 'store' : ...}
>>> x_dst = {'user' : ..., 'game' : ...}
>>> y_dst = conv(g, (x_src, x_dst))
>>> print(y_dst.keys())
dict_keys(['user', 'game'])
Parameters
----------
mods : dict[str, nn.Module]
Modules associated with every edge types. The forward function of each
module must have a `DGLHeteroGraph` object as the first argument, and
its second argument is either a tensor object representing the node
features or a pair of tensor object representing the source and destination
node features.
aggregate : str, callable, optional
Method for aggregating node features generated by different relations.
Allowed string values are 'sum', 'max', 'min', 'mean', 'stack'.
The 'stack' aggregation is performed along the second dimension, whose order
is deterministic.
User can also customize the aggregator by providing a callable instance.
For example, aggregation by summation is equivalent to the follows:
.. code::
def my_agg_func(tensors, dsttype):
# tensors: is a list of tensors to aggregate
# dsttype: string name of the destination node type for which the
# aggregation is performed
stacked = torch.stack(tensors, dim=0)
return torch.sum(stacked, dim=0)
Attributes
----------
mods : dict[str, nn.Module]
Modules associated with every edge types.
"""
def __init__(self, mods, aggregate='sum'):
super(HeteroGraphConv, self).__init__()
self.mods = nn.ModuleDict(mods)
# Do not break if graph has 0-in-degree nodes.
# Because there is no general rule to add self-loop for heterograph.
for _, v in self.mods.items():
set_allow_zero_in_degree_fn = getattr(v, 'set_allow_zero_in_degree', None)
if callable(set_allow_zero_in_degree_fn):
set_allow_zero_in_degree_fn(True)
if isinstance(aggregate, str):
self.agg_fn = get_aggregate_fn(aggregate)
else:
self.agg_fn = aggregate
def forward(self, g, inputs, mod_args=None, mod_kwargs=None):
"""Forward computation
Invoke the forward function with each module and aggregate their results.
Parameters
----------
g : DGLHeteroGraph
Graph data.
inputs : dict[str, Tensor] or pair of dict[str, Tensor]
Input node features.
mod_args : dict[str, tuple[any]], optional
Extra positional arguments for the sub-modules.
mod_kwargs : dict[str, dict[str, any]], optional
Extra key-word arguments for the sub-modules.
Returns
-------
dict[str, Tensor]
Output representations for every types of nodes.
"""
if mod_args is None:
mod_args = {}
if mod_kwargs is None:
mod_kwargs = {}
outputs = {nty : [] for nty in g.dsttypes}
if isinstance(inputs, tuple) or g.is_block:
if isinstance(inputs, tuple):
src_inputs, dst_inputs = inputs
else:
src_inputs = inputs
dst_inputs = {k: v[:g.number_of_dst_nodes(k)] for k, v in inputs.items()}
for stype, etype, dtype in g.canonical_etypes:
if etype in self.mods:
mod = self.mods[etype]
elif (stype, etype, dtype) in self.mods:
mod = self.mods[(stype, etype, dtype)]
else:
# skip
continue
rel_graph = g[stype, etype, dtype]
if rel_graph.number_of_edges() == 0:
continue
if stype not in src_inputs or dtype not in dst_inputs:
continue
dstdata = mod(
rel_graph,
(src_inputs[stype], dst_inputs[dtype]),
*mod_args.get(etype, ()),
**mod_kwargs.get(etype, {}))
outputs[dtype].append(dstdata)
else:
for stype, etype, dtype in g.canonical_etypes:
if etype in self.mods:
mod = self.mods[etype]
elif (stype, etype, dtype) in self.mods:
mod = self.mods[(stype, etype, dtype)]
else:
# skip
continue
rel_graph = g[stype, etype, dtype]
if rel_graph.number_of_edges() == 0:
continue
if stype not in inputs:
continue
dstdata = mod(
rel_graph,
(inputs[stype], inputs[dtype]),
*mod_args.get(etype, ()),
**mod_kwargs.get(etype, {}))
outputs[dtype].append(dstdata)
rsts = {}
for nty, alist in outputs.items():
if len(alist) != 0:
rsts[nty] = self.agg_fn(alist, nty)
return rsts
def get_aggregate_fn(agg):
"""Internal function to get the aggregation function for node data
generated from different relations.
Parameters
----------
agg : str
Method for aggregating node features generated by different relations.
Allowed values are 'sum', 'max', 'min', 'mean', 'stack'.
Returns
-------
callable
Aggregator function that takes a list of tensors to aggregate
and returns one aggregated tensor.
"""
if agg == 'sum':
fn = th.sum
elif agg == 'max':
fn = lambda inputs, dim: th.max(inputs, dim=dim)[0]
elif agg == 'min':
fn = lambda inputs, dim: th.min(inputs, dim=dim)[0]
elif agg == 'mean':
fn = th.mean
elif agg == 'stack':
fn = None # will not be called
else:
raise DGLError('Invalid cross type aggregator. Must be one of '
'"sum", "max", "min", "mean" or "stack". But got "%s"' % agg)
if agg == 'stack':
def stack_agg(inputs, dsttype): # pylint: disable=unused-argument
if len(inputs) == 0:
return None
return th.stack(inputs, dim=1)
return stack_agg
else:
def aggfn(inputs, dsttype): # pylint: disable=unused-argument
if len(inputs) == 0:
return None
stacked = th.stack(inputs, dim=0)
return fn(stacked, dim=0)
return aggfn