-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathstreamlit_app.py
54 lines (44 loc) · 2.08 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import streamlit as st
from streamlit_ketcher import st_ketcher
import utils
import target_predictions
DEFAULT_COMPOUND = "CHEMBL141739"
if "molfile" not in st.session_state:
st.session_state.molfile = None
if "chembl_id" not in st.session_state:
st.session_state.chembl_id = DEFAULT_COMPOUND
st.set_page_config(layout="wide")
st.subheader("🧪 Molecule editor")
chembl_id = st.text_input("ChEMBL ID:", st.session_state.chembl_id)
st.session_state.molfile = utils.id_to_molecule(chembl_id)
famous_molecules = [
('☕', 'Caffeine'), ('🥱', 'Melatonin'), ('🚬', 'Nicotine'), ('🌨️', 'Cocaine'), ('💊', 'Aspirin'),
('🍄', 'Psilocybine'), ('💎', 'Lysergide')
]
for molecule, column in zip(famous_molecules, st.columns(len(famous_molecules))):
with column:
emoji, name = molecule
if st.button(f'{emoji} {name}'):
st.session_state.molfile, st.session_state.chembl_id = utils.name_to_molecule(name)
editor_column, results_column = st.columns(2)
similar_smiles = []
with editor_column:
smiles = st_ketcher(st.session_state.molfile)
similarity_threshold = st.slider("Similarity threshold:", min_value=60, max_value=100)
with st.expander("Raw data"):
st.markdown(f"```{smiles}```")
with results_column:
similar_molecules = utils.find_similar_molecules(smiles, similarity_threshold)
if not similar_molecules:
st.warning("No results found")
else:
table = utils.render_similarity_table(similar_molecules)
similar_smiles = utils.get_similar_smiles(similar_molecules)
st.markdown(f'<div id="" style="overflow:scroll; height:600px; padding-left: 80px;">{table}</div>',
unsafe_allow_html=True)
if similar_smiles:
st.subheader("Target prediction based on [ChEMBL multitask model](https://github.com/chembl/chembl_multitask_model)")
if st.button("🔮 Predict targets"):
preds = target_predictions.predict_all(similar_smiles)
table = utils.render_target_predictions_table(preds)
st.markdown(table, unsafe_allow_html=True)