-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMixedModels.sas
479 lines (392 loc) · 18.2 KB
/
MixedModels.sas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
/*STAT 488-002 Consulting
Mixed Models to investigate the effects of aromatase inhibitors on fish fertility
Joelle Strom
Updated: Dec. 13, 2021*/
%MACRO SortAndPlot(DSName, Var);
Proc Sort data=&DSName;
By descending TRT TNK d;
Run;
Proc Sgpanel data=&DSName;
Panelby TRT / columns=3 onepanel;
Series x=d y=Pred / group=TNK groupLC=TRT break lineattrs=(pattern=solid);
Keylegend / type=linecolor title="";
Run;
Proc Sgpanel data=&DSName;
panelby TRT / columns=3 onepanel;
vline d / response=&Var group=TRT stat=mean limitstat=stderr;
Run;
%MEND;
Proc Import Datafile='/home/u49579191/Consulting/LetrozolelDat.csv' DBMS=CSV OUT=letrozolel;
GETNAMES=YES;
RUN;
data letrozolel;
set letrozolel;
t = d; /* discrete copy of time */
T1 = ifn(d<=10, 0, d - 10); /* knot at day 10 for PWL analysis */
T2 = ifn(d<=14, 0, d - 14); /* knot at day 14 for PWL analysis */
sqrtegg = sqrt(Eggs_gFem);
PctFert = PctFert/100;
PctVBL = PctVBL/100;
PctFert = (PctFert * 432 + 0.5) / 433;
PctVBL = (PctVBL * 432 + 0.5) / 433;
run;
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model Eggs_gFem = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model Eggs_gFem = TRT d T1 TRT*d TRT*T1/ s chisq distribution=gaussian;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model sqrtegg = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
/*Transforming the response variable decreases AIC over a model with untransformed variable and
also over the piece-wise regression (with knot at day 10)*/
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model sqrtegg = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual type=CS subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model sqrtegg = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual type=AR(1) subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
/*Log L decreased by changing variance matrix structure to AR(1)*/
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model Eggs_gFem = TRT d TRT*d/ s chisq distribution=poisson;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
/*Attempted poisson link but did not converge*/
/*FINAL MODEL*/
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model sqrtegg = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual type=AR(1) subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
output out=MixedOut1 pred=Pred;
run;
%SortAndPlot(MixedOut1, sqrtegg);
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d TRT*d/ s chisq distribution=beta;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d T2 TRT*d TRT*T2/ s chisq distribution=beta;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
/*Standard regression performs better than piece-wise with knot at day 14*/
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d TRT*d/ s chisq distribution=beta;
random t / residual type=CS subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d TRT*d/ s chisq distribution=beta;
random t / residual type=AR(1) subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
/*Changing variance matrix structure increases AIC*/
/*FINAL MODEL*/
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d TRT*d/ s chisq distribution=beta;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
output out=MixedOut2 pred=Pred;
run;
%SortAndPlot(MixedOut2, PctFert);
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d TRT*d/ s chisq distribution=beta;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d T2 TRT*d TRT*T2/ s chisq distribution=beta;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
/*Piece-wise regression with knot at day 14 improves upon standard regression*/
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d T2 TRT*d TRT*T2/ s chisq distribution=beta;
random t / residual type=CS subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d T2 TRT*d TRT*T2/ s chisq distribution=beta;
random t / residual type=AR(1) subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
/*Log L reduced by changing variance matrix structure to AR(1)*/
/*FINAL MODEL*/
proc glimmix data=letrozolel plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d T2 TRT*d TRT*T2/ s chisq distribution=beta;
random t / residual type=AR(1) subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
output out=MixedOut3 pred=Pred;
run;
%SortAndPlot(MixedOut3, PctVBL);
Proc Import Datafile='/home/u49579191/Consulting/AnastrozolelDat.csv' DBMS=CSV OUT=anastrozolel;
GETNAMES=YES;
RUN;
data anastrozolel;
set anastrozolel;
t = d; /* discrete copy of time */
T1 = ifn(d<=10, 0, d - 10); /* knot at day 10 for PWL analysis */
sqrtegg = sqrt(Eggs_gFem);
PctFert = PctFert/100;
PctVBL = PctVBL/100;
PctFert = (PctFert * 432 + 0.5) / 433;
PctVBL = (PctVBL * 432 + 0.5) / 433;
run;
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model Eggs_gFem = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model Eggs_gFem = TRT d T1 TRT*d TRT*T1/ s chisq distribution=gaussian;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model sqrtegg = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
/*Transforming the response variable decreases AIC over a model with untransformed variable and
also over the piece-wise regression (with knot at day 10)*/
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model sqrtegg = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual type=CS subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model sqrtegg = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual type=AR(1) subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
/*Log L decreased by changing variance matrix structure to AR(1)*/
/*FINAL MODEL*/
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model sqrtegg = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
output out=MixedOut4 pred=Pred;
run;
%SortAndPlot(MixedOut4, sqrtegg);
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d TRT*d/ s chisq distribution=beta;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
/*No obvious knot*/
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d TRT*d/ s chisq distribution=beta;
random t / residual type=CS subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d TRT*d/ s chisq distribution=beta;
random t / residual type=AR(1) subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
/*Changing variance matrix structure increases AIC*/
/*FINAL MODEL*/
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d TRT*d/ s chisq distribution=beta;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
output out=MixedOut5 pred=Pred;
run;
%SortAndPlot(MixedOut5, PctFert);
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d TRT*d/ s chisq distribution=beta;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
/*No obvious knot*/
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d TRT*d/ s chisq distribution=beta;
random t / residual type=CS subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d TRT*d/ s chisq distribution=beta;
random t / residual type=AR(1) subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
/*No parameter estimates with different variance structures*/
/*FINAL MODEL*/
proc glimmix data=anastrozolel plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d TRT*d/ s chisq distribution=beta;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
output out=MixedOut6 pred=Pred;
run;
%SortAndPlot(MixedOut6, PctVBL);
Proc Import Datafile='/home/u49579191/Consulting/ExemestaneDat.csv' DBMS=CSV OUT=exemestane;
GETNAMES=YES;
RUN;
data exemestane;
set exemestane;
t = d; /* discrete copy of time */
sqrtegg = sqrt(Eggs_gFem);
PctFert = PctFert/100;
PctVBL = PctVBL/100;
PctFert = (PctFert * 432 + 0.5) / 433;
PctVBL = (PctVBL * 432 + 0.5) / 433;
run;
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model Eggs_gFem = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
/*No obvious knot*/
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model sqrtegg = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
/*Transforming the response variable decreases AIC over a model with untransformed variable*/
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model sqrtegg = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual type=CS subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model sqrtegg = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual type=AR(1) subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
run;
/*Log L decreased by changing variance matrix structure to AR(1)*/
/*FINAL MODEL*/
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model sqrtegg = TRT d TRT*d/ s chisq distribution=gaussian;
random t / residual type=AR(1) subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
output out=MixedOut7 pred=Pred;
run;
%SortAndPlot(MixedOut7, Eggs_gFem);
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d TRT*d/ s chisq distribution=beta;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
/*No obvious knot*/
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d TRT*d/ s chisq distribution=beta;
random t / residual type=CS subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d TRT*d/ s chisq distribution=beta;
random t / residual type=AR(1) subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
/*Changing variance matrix structure to compound symmetry decreases AIC*/
/*FINAL MODEL*/
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model PctFert = TRT d TRT*d/ s chisq distribution=beta;
random t / residual type=CS subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
output out=MixedOut8 pred=Pred;
run;
%SortAndPlot(MixedOut8, PctFert);
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d TRT*d/ s chisq distribution=beta;
random t / residual subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
/*No obvious knot*/
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d TRT*d/ s chisq distribution=beta;
random t / residual type=CS subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d TRT*d/ s chisq distribution=beta;
random t / residual type=AR(1) subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
run;
/*Log L reduced by changing variance matrix structure to compound symmetry*/
/*FINAL MODEL*/
proc glimmix data=exemestane plots=all;
class TNK t TRT(ref='control');
model PctVBL = TRT d TRT*d/ s chisq distribution=beta;
random t / residual type=CS subject=TNK; /* measurements are repeated for subjects */
random intercept / subject=TNK; /* each subject gets its own intercept */
Nloptions maxiter=100 tech=nrridg;
output out=MixedOut9 pred=Pred;
run;
%SortAndPlot(MixedOut9, PctVBL);
**End;