-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStrom_FinalProject.Rmd
485 lines (417 loc) · 21.1 KB
/
Strom_FinalProject.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
---
title: "Final Project"
author: "Joelle Strom"
date: "12/14/2021"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# AirBnB
## EDA
```{r}
train <- read.csv("D:/Documents/Applied Stats MS/Fall 2021/STAT 488_001/airbnb.train.csv")
head(train)
#Possible important variables: neighbourhood_group, latitude, longitude, room_type, number_of_reviews, reviews_per_month, availability_365
#Will not attempt to use id, name, host_id, host_name, last_review, or neighbourhood
train <- transform(train,
room_type = as.factor(room_type),
neighbourhood_group = as.factor(neighbourhood_group))
summary(train) #Some variables have NAs
train[1:50,]
sum(train$number_of_reviews[which(is.na(train$reviews_per_month))]) #The NAs appear to be in review variables where total # of reviews = 0, so the NAs in reviews_per_month will be replaced with 0s
train$reviews_per_month[is.na(train$reviews_per_month)] <- 0 #Replace NAs with 0
train$logprice <- log(train$price + 1) #Will use transformed variable due to large range and right skew
summary(train) #No NA values in predictors that will be used or in response
library(ggplot2)
ggplot(train, aes(room_type, price)) + geom_violin() #Some very high outliers, but it appears that shared rooms have a lower price ceiling overall. Private rooms have higher density at lower prices than entire home/apt
ggplot(train, aes(neighbourhood_group, price)) + geom_violin() #Manhattan and Brooklyn have higher prices than the other 3; Bronx has the lowest prices, followed by Queens
ggplot(train, aes(latitude, price)) + geom_point() + geom_smooth() #Latitudes near 40.5 have high prices, then there's a dip, then a rise, then another fall. This seems to have an effect in a non-linear fashion
ggplot(train, aes(longitude, price)) + geom_point() + geom_smooth() #Prices increase as longitude increases up to a certain point, then prices fall and essentially stabilize. This also seems to have an effect in a non-linear fashion
ggplot(train, aes(number_of_reviews, price)) + geom_point() + geom_smooth() #This has a very slight downward linear trend, don't expect this predictor to be very important
ggplot(train, aes(reviews_per_month, price)) + geom_point() + geom_smooth() #This has a stronger downward linear trend than number_of_reviews
ggplot(train, aes(availability_365, price)) + geom_point() + geom_smooth() #Price increases as availability increases, before a sudden dip and then drastic climb. This has an effect in a non-linear fashion
ggplot(train, aes(minimum_nights, price)) + geom_point() + geom_smooth() #After an early spike, this trend decreases and has a slight negative parabolic shape. This has an effect in a non-linear fashion, unable to tell how strong this variable might be as a predictor
ggplot(train, aes(calculated_host_listings_count, price)) + geom_point() + geom_smooth() #After some quick oscillations, price dramatically increases as host listings increase
#Take a look at top listings
ord <- train[order(train$price, decreasing=TRUE),]
ord[1:20,]
#No apparent patterns in the text variables (or otherwise)
library(Boruta)
airbnb.bor <- Boruta(price ~ room_type + neighbourhood_group + longitude + latitude + number_of_reviews + reviews_per_month + availability_365
+ minimum_nights + calculated_host_listings_count, data=train)
print(airbnb.bor)
plot(airbnb.bor)
#All attributes deemed important- all will remain in models
avgimp <- apply(airbnb.bor$ImpHistory, 2, FUN=mean)
avgimp[order(avgimp, decreasing=TRUE)]
#Top 5 predictors are room_type, availability_365, calculated_host_listings_count, minimum_nights, and reviews_per_month
```
## Modelling
```{r}
library(caret)
library(xgboost)
library(gam)
library(doParallel)
xgbGrid <- expand.grid(max_depth = c(1, 2, 3),
eta = c(0.01, 0.1, 0.3),
colsample_bytree = c(0.6, 0.8),
subsample = c(0.5, 0.75, 1),
nrounds = c(100, 500, 1500),
gamma = 0,
min_child_weight = 1)
cl <- makePSOCKcluster(20)
registerDoParallel(cl)
start.time <- proc.time()
#Train a boosted tree model
cv.5 <- trainControl(method="cv", number=5)
xgb.cv <- train(logprice ~ room_type + neighbourhood_group + longitude + latitude + number_of_reviews + reviews_per_month +
availability_365 + minimum_nights + calculated_host_listings_count, data=train, method="xgbTree",
trControl=cv.5, tuneGrid=xgbGrid)
xgb.cv #Final tuning parameters: nrounds=1500, max_depth=3, eta=0.1, gamma=0, colsample_bytree=0.8, min_child_weight=1, and subsample=0.75
stopCluster(cl)
#But maybe a different number of trees will reduce test error
#Set up k-fold CV
set.seed(18)
k <- 5
n <- nrow(train)
fold <- sample(rep(1:k, length=n), replace=FALSE)
train.mat <- model.matrix(logprice ~ room_type + neighbourhood_group + longitude + latitude + number_of_reviews +
reviews_per_month + availability_365 + minimum_nights + calculated_host_listings_count,
data=train)
nr <- c(750, 1000, 1500, 2000)
yhat.xgb <- data.frame("750" = rep(0, nrow(train)),
"1000" = rep(0, nrow(train)),
"1500" = rep(0, nrow(train)),
"2000" = rep(0, nrow(train)))
rmse <- rep(0,4)
for(i in 1:length(nr)){
set.seed(18)
for(j in 1:k){
xgb.out <- xgboost(data=train.mat[fold != j,], label=train$logprice[fold != j], eta=0.1, max_depth=3, gamma=0,
colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=nr[i])
yhat.xgb[fold == j, i] <- predict(xgb.out, train.mat[fold == j,])
}
rmse[i] <- sqrt(mean((yhat.xgb[,i] - train$logprice)**2))
}
rmse #750 rounds is the best option
pred.xgb <- exp(yhat.xgb[,4])-1
sqrt(mean((pred.xgb-train$price)**2))
#Train a GAM with splines
d <- c(1:10) #Train longitude
mse <- rep(0,10)
for (i in 1:10){
set.seed(18)
yhat <- rep(NA, nrow(train))
for (j in 1:k){
a <- suppressWarnings(gam(logprice ~ room_type + neighbourhood_group + s(longitude, df=d[i]) + s(latitude)
+ s(number_of_reviews) + s(reviews_per_month) + s(availability_365)
+ s(minimum_nights) + s(calculated_host_listings_count),
data = train[fold != j,]))
yhat[fold == j] <- suppressWarnings(predict(a, train[fold == j,]))
}
mse[i] <- sqrt(mean((yhat - train$logprice)**2))
}
d[which.min(mse)] #10
d <- c(1:10) #Train latitude
mse <- rep(0,10)
for (i in 1:10){
set.seed(18)
yhat <- rep(NA, nrow(train))
for (j in 1:k){
a <- suppressWarnings(gam(logprice ~ room_type + neighbourhood_group + s(longitude) + s(latitude, df=d[i])
+ s(number_of_reviews) + s(reviews_per_month) + s(availability_365)
+ s(minimum_nights) + s(calculated_host_listings_count),
data = train[fold != j,]))
yhat[fold == j] <- suppressWarnings(predict(a, train[fold == j,]))
}
mse[i] <- sqrt(mean((yhat - train$logprice)**2))
}
d[which.min(mse)] #10
d <- c(1:10) #Train number of reviews
mse <- rep(0,10)
for (i in 1:10){
set.seed(18)
yhat <- rep(NA, nrow(train))
for (j in 1:k){
a <- suppressWarnings(gam(logprice ~ room_type + neighbourhood_group + s(longitude) + s(latitude)
+ s(number_of_reviews, df=d[i]) + s(reviews_per_month) + s(availability_365)
+ s(minimum_nights) + s(calculated_host_listings_count),
data = train[fold != j,]))
yhat[fold == j] <- suppressWarnings(predict(a, train[fold == j,]))
}
mse[i] <- sqrt(mean((yhat - train$logprice)**2))
}
d[which.min(mse)] #10
d <- c(1:10) #Train reviews per month
mse <- rep(0,10)
for (i in 1:10){
set.seed(18)
yhat <- rep(NA, nrow(train))
for (j in 1:k){
a <- suppressWarnings(gam(logprice ~ room_type + neighbourhood_group + s(longitude) + s(latitude)
+ s(number_of_reviews) + s(reviews_per_month, df=d[i]) + s(availability_365)
+ s(minimum_nights) + s(calculated_host_listings_count),
data = train[fold != j,]))
yhat[fold == j] <- suppressWarnings(predict(a, train[fold == j,]))
}
mse[i] <- sqrt(mean((yhat - train$logprice)**2))
}
d[which.min(mse)] #10
d <- c(1:10) #Train availability
mse <- rep(0,10)
for (i in 1:10){
set.seed(18)
yhat <- rep(NA, nrow(train))
for (j in 1:k){
a <- suppressWarnings(gam(logprice ~ room_type + neighbourhood_group + s(longitude) + s(latitude)
+ s(number_of_reviews) + s(reviews_per_month) + s(availability_365, df=d[i])
+ s(minimum_nights) + s(calculated_host_listings_count),
data = train[fold != j,]))
yhat[fold == j] <- suppressWarnings(predict(a, train[fold == j,]))
}
mse[i] <- sqrt(mean((yhat - train$logprice)**2))
}
d[which.min(mse)] #10
d <- c(1:10) #Train minimum nights
mse <- rep(0,10)
for (i in 1:10){
set.seed(18)
yhat <- rep(NA, nrow(train))
for (j in 1:k){
a <- suppressWarnings(gam(logprice ~ room_type + neighbourhood_group + s(longitude) + s(latitude)
+ s(number_of_reviews) + s(reviews_per_month) + s(availability_365)
+ s(minimum_nights, df=d[i]) + s(calculated_host_listings_count),
data = train[fold != j,]))
yhat[fold == j] <- suppressWarnings(predict(a, train[fold == j,]))
}
mse[i] <- sqrt(mean((yhat - train$logprice)**2))
}
d[which.min(mse)] #9
d <- c(1:10) #Train host listings
mse <- rep(0,10)
for (i in 1:10){
set.seed(18)
yhat <- rep(NA, nrow(train))
for (j in 1:k){
a <- suppressWarnings(gam(logprice ~ room_type + neighbourhood_group + s(longitude) + s(latitude)
+ s(number_of_reviews) + s(reviews_per_month) + s(availability_365)
+ s(minimum_nights) + s(calculated_host_listings_count, df=d[i]),
data = train[fold != j,]))
yhat[fold == j] <- suppressWarnings(predict(a, train[fold == j,]))
}
mse[i] <- sqrt(mean((yhat - train$logprice)**2))
}
d[which.min(mse)] #10
#Train FULL model
set.seed(18)
yhat.gam <- rep(NA, nrow(train))
for (j in 1:k){
a <- suppressWarnings(gam(logprice ~ room_type + neighbourhood_group + s(longitude, df=10) + s(latitude, df=10)
+ s(number_of_reviews, df=10) + s(reviews_per_month, df=10) + s(availability_365, df=10)
+ s(minimum_nights, df=9) + s(calculated_host_listings_count, df=10),
data = train[fold != j,]))
yhat.gam[fold == j] <- suppressWarnings(predict(a, train[fold == j,]))
}
sqrt(mean((yhat.gam - train$logprice)**2))
pred.gam <- exp(yhat.gam)-1
sqrt(mean((pred.gam-train$price)**2))
ensemble <- (pred.gam + pred.xgb) / 2
sqrt(mean((ensemble-train$price)**2))
```
## Make Predictions
```{r}
#Fit final models
xgb.final <- xgboost(data=train.mat, label=train$logprice, eta=0.1, max_depth=3, gamma=0,
colsample_bytree=0.8, min_child_weight=1, subsample=0.75, nrounds=750)
gam.final <- suppressWarnings(gam(logprice ~ room_type + neighbourhood_group + s(longitude, df=10) + s(latitude, df=10)
+ s(number_of_reviews, df=10) + s(reviews_per_month, df=10) + s(availability_365, df=10)
+ s(minimum_nights, df=9) + s(calculated_host_listings_count, df=10),
data = train))
test <- read.csv("D:/Documents/Applied Stats MS/Fall 2021/STAT 488_001/airbnb.test.csv")
test <- transform(test,
room_type = as.factor(room_type),
neighbourhood_group = as.factor(neighbourhood_group))
test$reviews_per_month[is.na(test$reviews_per_month)] <- 0 #Replace NAs with 0
test.mat <- model.matrix(~room_type + neighbourhood_group + longitude + latitude + number_of_reviews +
reviews_per_month + availability_365 + minimum_nights + calculated_host_listings_count,
data=test)
test.xgb <- predict(xgb.final, test.mat)
test.gam <- suppressWarnings(predict(gam.final, test))
test.xgb <- exp(test.xgb) - 1
test.gam <- exp(test.gam) - 1
test.ens <- (test.xgb + test.gam) / 2
final.xgb <- cbind(test$id, test.xgb)
colnames(final.xgb) <- c("id", "price")
final.gam <- cbind(test$id, test.gam)
colnames(final.gam) <- c("id", "price")
final.ens <- cbind(test$id, test.ens)
colnames(final.ens) <- c("id", "price")
write.csv(final.xgb, "D:/Documents/Applied Stats MS/Fall 2021/STAT 488_001/final.airbnb.xgb.csv", row.names=FALSE)
write.csv(final.gam, "D:/Documents/Applied Stats MS/Fall 2021/STAT 488_001/final.airbnb.gam.csv", row.names=FALSE)
write.csv(final.ens, "D:/Documents/Applied Stats MS/Fall 2021/STAT 488_001/final.airbnb.ens.csv", row.names=FALSE)
#Best model is XGBoost with nrounds=750, max_depth=3, eta=0.1, gamma=0, colsample_bytree=0.8, min_child_weight=1, and subsample=0.75
```
# Rain in Australia
## EDA
```{r}
train <- read.csv("D:/Documents/Applied Stats MS/Fall 2021/STAT 488_001/rain.train.csv")
head(train)
summary(train) #Will not try to use id, date; will try to factor location, wind_gust_dir, wind_dir9am, wind_dir3pm
#Might try to factor evaporation and sunshine
#NAs in min_temp, max_temp, rainfall, wind_gust_speed, wind_speed9am, wind_speed3pm, humidity9am, humidity3pm, pressure9am, pressure3pm, cloud9am, clous3pm, temp9am, temp3pm, rain_today; will try to impute
train <- transform(train,
location = as.factor(location),
wind_gust_dir = as.factor(wind_gust_dir),
wind_dir9am = as.factor(wind_dir9am),
wind_dir3pm = as.factor(wind_dir3pm),
evaporation = as.factor(evaporation),
sunshine = as.factor(sunshine))
summary(train)
length(levels(train$location))
length(levels(train$wind_gust_dir))
length(levels(train$wind_dir3pm))
length(levels(train$wind_dir9am))
#These variables have a large number of levels, which will slow down model training. Will leave out location, but will try to keep the others in initial models
library(mice)
imp <- mice(train, m=5, method='pmm', seed=1800)
train.comp <- complete(imp, 3)
summary(train.comp) #No more NA values
#Variable design
#What if the difference in predictors over the course of the day holds some information?
train.comp$tempdiff <- train.comp$max_temp - train.comp$min_temp
train.comp$winddiff <- train.comp$wind_speed3pm - train.comp$wind_speed9am
train.comp$humdiff <- train.comp$humidity3pm - train.comp$humidity9am
train.comp$presdiff <- train.comp$pressure3pm - train.comp$pressure9am
train.comp$clouddiff <- train.comp$cloud3pm - train.comp$cloud9am
train.comp$small.tempdiff <- train.comp$temp3pm - train.comp$temp9am
write.csv(train.comp, file="D:/Documents/Applied Stats MS/Fall 2021/STAT 488_001/rain.train.comp.csv")
#Write CSV to return to this data set later so that this imputation does not need to be re-run
#Lots of possible predictors, use Boruta to find the more important ones
library(Boruta)
library(doParallel)
cl <- makePSOCKcluster(20)
registerDoParallel(cl)
set.seed(1800)
rain.bor <- Boruta(rain_tomorrow ~ . - id - date - location, data=train.comp)
print(rain.bor)
plot(rain.bor)
stopCluster(cl)
#All features deemed important, all will be left in the model
#Look at some visualizations of most important predictors
avgimp <- apply(rain.bor$ImpHistory, 2, FUN=mean)
avgimp[order(avgimp, decreasing=TRUE)]
#Top 5 predictors are: humidity3pm, wind_gust_speed, cloud3pm, pressure3pm, pressure9am
library(ggplot2)
ggplot(aes(humidity3pm,factor(rain_tomorrow)),data=train.comp) + geom_violin()
ggplot(aes(wind_gust_speed,factor(rain_tomorrow)),data=train.comp) + geom_violin()
ggplot(aes(cloud3pm,factor(rain_tomorrow)),data=train.comp) + geom_violin()
ggplot(aes(pressure3pm,factor(rain_tomorrow)),data=train.comp) + geom_violin()
ggplot(aes(pressure9am,factor(rain_tomorrow)),data=train.comp) + geom_violin()
```
## Modelling
```{r}
library(caret)
library(xgboost)
library(nnet)
xgbGrid <- expand.grid(max_depth = c(1, 2, 3),
eta = c(0.01, 0.1, 0.3),
colsample_bytree = c(0.6, 0.8),
subsample = c(0.5, 0.75, 1),
nrounds = c(100, 500, 1500),
gamma = 0,
min_child_weight = 1)
cl <- makePSOCKcluster(20)
registerDoParallel(cl)
#Train a boosted tree model
cv.5 <- trainControl(method="cv", number=5)
xgb.cv <- train(factor(rain_tomorrow) ~ . - id - date - location, data=train.comp, method="xgbTree",
trControl=cv.5, tuneGrid=xgbGrid)
xgb.cv #Final tuning parameters: nrounds=500, max_depth=3, eta=0.1, gamma=0, colsample_bytree=0.6, min_child_weight=1, and subsample=0.5
stopCluster(cl)
#Try different numbers of trees
set.seed(18)
k <- 5
n <- nrow(train.comp)
fold <- sample(rep(1:k, length=n), replace=FALSE)
train.mat <- model.matrix(factor(rain_tomorrow) ~ . - id - date - location, data=train.comp)
nr <- c(250, 500, 750, 1000)
yhat.xgb <- data.frame("250" = rep(0, nrow(train.comp)),
"500" = rep(0, nrow(train.comp)),
"750" = rep(0, nrow(train.comp)),
"1000" = rep(0, nrow(train.comp)))
logl <- rep(0,4)
for(i in 1:length(nr)){
set.seed(18)
for(j in 1:k){
xgb.out <- xgboost(data=train.mat[fold != j,], label=train.comp$rain_tomorrow[fold != j], eta=0.1, max_depth=3, gamma=0,
colsample_bytree=0.6, min_child_weight=1, subsample=0.5, nrounds=nr[i])
yhat.xgb[fold == j, i] <- predict(xgb.out, train.mat[fold == j,])
}
yhat.xgb[,i] <- ifelse(yhat.xgb[,i] < 0, yes=9*10**(-15), no=yhat.xgb[,i])
yhat.xgb[,i] <- ifelse(yhat.xgb[,i] > 1, yes=1-9*10**(-15), no=yhat.xgb[,i])
logl[i] <- mean(-(train.comp$rain_tomorrow*log(yhat.xgb[,i]) + (1-train.comp$rain_tomorrow)*log(1-yhat.xgb[,i])))
}
logl #250 rounds is the best option
cl <- makePSOCKcluster(20)
registerDoParallel(cl)
#Train a boosted tree model
cv.5 <- trainControl(method="cv", number=5)
nnet.cv <- train(factor(rain_tomorrow) ~ . - id - date - location, data=train.comp, method="nnet", trControl=cv.5)
nnet.cv #Final tuning parameters: size=3, decay=0.1
stopCluster(cl)
yhat.nnet <- rep(0, nrow(train.comp))
set.seed(18)
for(j in 1:k){
nnet.out <- nnet(x=train.mat[fold != j,], y=train.comp$rain_tomorrow[fold != j], size=3, decay=0.1)
yhat.nnet[fold == j] <- predict(nnet.out, newdata=train.mat[fold == j,])
}
yhat.nnet <- ifelse(yhat.nnet < 0, yes=9*10**(-15), no=yhat.nnet)
yhat.nnet <- ifelse(yhat.nnet > 1, yes=1-9*10**(-15), no=yhat.nnet)
mean(-(train.comp$rain_tomorrow*log(yhat.nnet) + (1-train.comp$rain_tomorrow)*log(1-yhat.nnet))) #LogL
#Slightly more accurate than the boosted tree model
yhat.ens <- (yhat.xgb[,1] + yhat.nnet) / 2
mean(-(train.comp$rain_tomorrow*log(yhat.ens) + (1-train.comp$rain_tomorrow)*log(1-yhat.ens))) #LogL
#An average of the two models is better??
```
## Make Predictions
```{r}
set.seed(18)
xgb.final <- xgboost(data=train.mat, label=train.comp$rain_tomorrow, eta=0.1, max_depth=3, gamma=0,
colsample_bytree=0.6, min_child_weight=1, subsample=0.5, nrounds=250)
nnet.final <- nnet(x=train.mat, y=train.comp$rain_tomorrow, size=3, decay=0.1)
test <- read.csv("D:/Documents/Applied Stats MS/Fall 2021/STAT 488_001/rain.test.csv")
test <- transform(test,
location = as.factor(location),
wind_gust_dir = as.factor(wind_gust_dir),
wind_dir9am = as.factor(wind_dir9am),
wind_dir3pm = as.factor(wind_dir3pm),
evaporation = as.factor(evaporation),
sunshine = as.factor(sunshine))
imp <- mice(test, m=5, method='pmm', seed=1800)
test.comp <- complete(imp, 3)
summary(test.comp) #No more NA values
test.comp$tempdiff <- test.comp$max_temp - test.comp$min_temp
test.comp$winddiff <- test.comp$wind_speed3pm - test.comp$wind_speed9am
test.comp$humdiff <- test.comp$humidity3pm - test.comp$humidity9am
test.comp$presdiff <- test.comp$pressure3pm - test.comp$pressure9am
test.comp$clouddiff <- test.comp$cloud3pm - test.comp$cloud9am
test.comp$small.tempdiff <- test.comp$temp3pm - test.comp$temp9am
test.mat <- model.matrix(~ . - id - date - location, data=test.comp)
test.xgb <- predict(xgb.final, test.mat)
test.xgb <- ifelse(test.xgb < 0, yes=9*10**(-15), no=test.xgb)
test.xgb <- ifelse(test.xgb > 1, yes=1-9*10**(-15), no=test.xgb)
test.nnet <- predict(nnet.final, test.mat)
test.nnet <- ifelse(test.nnet < 0, yes=9*10**(-15), no=test.nnet)
test.nnet <- ifelse(test.nnet > 1, yes=1-9*10**(-15), no=test.nnet)
test.ens <- (test.xgb + test.nnet) / 2
final.xgb <- cbind(test.comp$id, test.xgb)
colnames(final.xgb) <- c("id", "rain_tomorrow")
final.nnet <- cbind(test.comp$id, test.nnet)
colnames(final.nnet) <- c("id", "rain_tomorrow")
final.ens <- cbind(test.comp$id, test.ens)
colnames(final.ens) <- c("id", "rain_tomorrow")
write.csv(final.xgb, "D:/Documents/Applied Stats MS/Fall 2021/STAT 488_001/final.rain.xgb.csv", row.names=FALSE)
write.csv(final.nnet, "D:/Documents/Applied Stats MS/Fall 2021/STAT 488_001/final.rain.nnet.csv", row.names=FALSE)
write.csv(final.ens, "D:/Documents/Applied Stats MS/Fall 2021/STAT 488_001/final.rain.ens.csv", row.names=FALSE)
```