-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathdemo_robot.bash
executable file
·78 lines (59 loc) · 2.91 KB
/
demo_robot.bash
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/bin/bash
D=results
################################################################################
# STEP 1: Train the DMP with a trajectory. Try it with different # basis functions
python3 step1_train_dmp_from_trajectory_file.py trajectory.txt ${D}/training --n 15 --save
# 10 basis functions look good; choose it as initial DMP for optimization
cp ${D}/training/dmp_trained_10.json ${D}/dmp_initial.json
################################################################################
# STEP 2: Define and save the task
python3 step2_define_task.py ${D} task.json
################################################################################
# STEP 3: Tune the exploration noise
# Low exploration noise
python3 step3_tune_exploration.py ${D}/dmp_initial.json ${D}/tune_exploration --save --n 10 --sigma 1.0
DU="${D}/tune_exploration/sigma_1.000"
for i_sample in $(seq -f "%02g" 0 9)
do # Run the sampled DMPs on the robot
../../bin/robotExecuteDmp ${DU}/${i_sample}_dmp_for_cpp.json ${DU}/${i_sample}_cost_vars.txt
done
python3 plot_rollouts.py ${DU} ${D}/task.json --save # Save the results as a png
# Medium exploration noise
python3 step3_tune_exploration.py ${D}/dmp_initial.json ${D}/tune_exploration --save --n 10 --sigma 20.0
DU="${D}/tune_exploration/sigma_20.000"
for i_sample in $(seq -f "%02g" 0 9)
do # Run the sampled DMPs on the robot
../../bin/robotExecuteDmp ${DU}/${i_sample}_dmp_for_cpp.json ${DU}/${i_sample}_cost_vars.txt
done
python3 plot_rollouts.py ${DU} ${D}/task.json --save # Save the results as a png
# High exploration noise
python3 step3_tune_exploration.py ${D}/dmp_initial.json ${D}/tune_exploration --save --n 10 --sigma 40.0
DU="${D}/tune_exploration/sigma_40.000"
for i_sample in $(seq -f "%02g" 0 9)
do # Run the sampled DMPs on the robot
../../bin/robotExecuteDmp ${DU}/${i_sample}_dmp_for_cpp.json ${DU}/${i_sample}_cost_vars.txt
done
python3 plot_rollouts.py ${DU} ${D}/task.json --save # Save the results as a png
# 20.0 looks good; choose it as initial distribution
cp ${D}/tune_exploration/sigma_20.000/distribution.json ${D}/distribution_initial.json
################################################################################
# STEP 4: Prepare the optimization
python3 step4_prepare_optimization.py ${D}
################################################################################
# STEP 5: Run the optimization
for i_update in $(seq -f "%05g" 0 15)
do
# Run the sampled DMPs on the robot
DU="${D}/update${i_update}"
# Evaluation rollout
../../bin/robotExecuteDmp ${DU}/eval_dmp_for_cpp.json ${DU}/eval_cost_vars.txt
# Samples rollouts
for i in $(seq -f "%03g" 0 4)
do
../../bin/robotExecuteDmp ${DU}/${i}_dmp_for_cpp.json ${DU}/${i}_cost_vars.txt
done
# Update the distribution (given the cost_vars above), and generate the
# next batch of samples
python3 step5_one_optimization_update.py ${D} ${i_update}
done
python3 plot_optimization.py ${D} --save