-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathstep3_tune_exploration.py
108 lines (84 loc) · 3.89 KB
/
step3_tune_exploration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# This file is part of DmpBbo, a set of libraries and programs for the
# black-box optimization of dynamical movement primitives.
# Copyright (C) 2018 Freek Stulp
#
# DmpBbo is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# DmpBbo is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DmpBbo. If not, see <http://www.gnu.org/licenses/>.
""" Script for tuning the exploration. """
import argparse
import os
from pathlib import Path
import numpy as np
from matplotlib import pyplot as plt
import dmpbbo.json_for_cpp as jc
from dmpbbo.bbo.DistributionGaussian import DistributionGaussian
def main():
""" Main function that is called when executing the script. """
parser = argparse.ArgumentParser()
parser.add_argument("dmp", help="input dmp")
parser.add_argument("output_directory", help="directory to write results to")
parser.add_argument("--sigma", help="sigma of covariance matrix", type=float, default=3.0)
parser.add_argument("--n", help="number of samples", type=int, default=10)
parser.add_argument("--traj", action="store_true", help="integrate DMP and save trajectory")
parser.add_argument("--show", action="store_true", help="show result plots")
parser.add_argument("--save", action="store_true", help="save result plots to png")
args = parser.parse_args()
sigma_dir = "sigma_%1.3f" % args.sigma
directory = Path(args.output_directory, sigma_dir)
filename = args.dmp
print(f"Loading DMP from: {filename}")
dmp = jc.loadjson(filename)
ts = dmp.ts_train
parameter_vector = dmp.get_param_vector()
n_samples = args.n
sigma = args.sigma
covar_init = sigma * sigma * np.eye(parameter_vector.size)
distribution = DistributionGaussian(parameter_vector, covar_init)
filename = Path(directory, f"distribution.json")
print(f"Saving sampling distribution to: {filename}")
os.makedirs(directory, exist_ok=True)
jc.savejson(filename, distribution)
samples = distribution.generate_samples(n_samples)
if args.show or args.save:
fig = plt.figure()
ax1 = fig.add_subplot(121) # noqa
distribution.plot(ax1)
ax1.plot(samples[:, 0], samples[:, 1], "o", color="#BBBBBB")
ax2 = fig.add_subplot(122)
xs, xds, _, _ = dmp.analytical_solution()
traj_mean = dmp.states_as_trajectory(ts, xs, xds)
lines, _ = traj_mean.plot([ax2])
plt.setp(lines, linewidth=4, color="#007700")
for i_sample in range(n_samples):
dmp.set_param_vector(samples[i_sample, :])
filename = Path(directory, f"{i_sample:02}_dmp")
print(f"Saving sampled DMP to: {filename}.json")
jc.savejson(str(filename) + ".json", dmp)
jc.savejson_for_cpp(str(filename) + "_for_cpp.json", dmp)
if args.show or args.save or args.traj:
xs, xds, forcing, fa_outputs = dmp.analytical_solution()
traj_sample = dmp.states_as_trajectory(ts, xs, xds)
if args.traj:
filename = Path(directory, f"{i_sample:02}_traj.txt")
print(f"Saving sampled trajectory to: {filename}")
traj_sample.savetxt(filename)
if args.show or args.save:
lines, _ = traj_sample.plot([ax2]) # noqa
plt.setp(lines, color="#BBBBBB", alpha=0.5)
if args.save:
filename = "exploration_dmp_traj.png"
plt.gcf().savefig(Path(directory, filename))
if args.show:
plt.show()
if __name__ == "__main__":
main()