-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_csv.py
152 lines (123 loc) · 5.96 KB
/
create_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import pymongo
import pandas as pd
MONGO_CLIENT = pymongo.MongoClient("mongodb://192.168.1.7:27017/")
SDA_DB = MONGO_CLIENT["steam_dota_api"]
LGC_COL = SDA_DB["league_games_col"]
filenames = ["10min", "20min", "30min"]
min_10 = LGC_COL.find(
{"winner": {"$exists": True}, "scoreboard.duration": {"$lte": 600}}
)
min_20 = LGC_COL.find(
{"winner": {"$exists": True}, "scoreboard.duration": {"$gt": 600, "$lte": 1200}}
)
min_30 = LGC_COL.find(
{"winner": {"$exists": True}, "scoreboard.duration": {"$gt": 1200}}
)
timelines = [min_10, min_20, min_30]
for i_timeline, timeline in enumerate(timelines):
matches_for_pd = []
for entry in timeline:
try:
if "radiant" not in entry["scoreboard"]:
continue
tmp = {}
tmp["duration"] = entry["scoreboard"]["duration"]
tmp["radiant_series_wins"] = entry["radiant_series_wins"]
tmp["dire_series_wins"] = entry["dire_series_wins"]
tmp["score"] = (
entry["scoreboard"]["radiant"]["score"]
- entry["scoreboard"]["dire"]["score"]
)
rts = entry["scoreboard"]["radiant"]["tower_state"]
for i, t in enumerate(format(rts, "b").zfill(11)):
tmp[f"{i}_rts"] = t
dts = entry["scoreboard"]["dire"]["tower_state"]
for i, t in enumerate(format(dts, "b").zfill(11)):
tmp[f"{i}_dts"] = t
rbs = entry["scoreboard"]["radiant"]["barracks_state"]
for i, t in enumerate(format(rbs, "b").zfill(6)):
tmp[f"{i}_rbs"] = t
dbs = entry["scoreboard"]["dire"]["barracks_state"]
for i, t in enumerate(format(dbs, "b").zfill(6)):
tmp[f"{i}_dbs"] = t
radiant_net_worth = 0
dire_net_worth = 0
radiant_assissts = 0
dire_assissts = 0
radiant_last_hits = 0
dire_last_hits = 0
radiant_gold = 0
dire_gold = 0
radiant_level = 0
dire_level = 0
radiant_gpm = 0
dire_gpm = 0
radiant_xpm = 0
dire_xpm = 0
for i, player in enumerate(entry["scoreboard"]["radiant"]["players"]):
# tmp[f'radiant_player_{i}_kills'] = player['kills']
# tmp[f'radiant_player_{i}_death'] = player['death']
# tmp[f'radiant_player_{i}_assists'] = player['assists']
# tmp[f'radiant_player_{i}_last_hits'] = player['last_hits']
# tmp[f'radiant_player_{i}_gold'] = player['gold']
# tmp[f'radiant_player_{i}_level'] = player['level']
# tmp[f'radiant_player_{i}_gold_per_min'] = player['gold_per_min']
# tmp[f'radiant_player_{i}_xp_per_min'] = player['xp_per_min']
# tmp[f'radiant_player_{i}_net_worth'] = player['net_worth']
# tmp[f'radiant_player_{i}_item0'] = player['item0']
# tmp[f'radiant_player_{i}_item1'] = player['item1']
# tmp[f'radiant_player_{i}_item2'] = player['item2']
# tmp[f'radiant_player_{i}_item3'] = player['item3']
# tmp[f'radiant_player_{i}_item4'] = player['item4']
# tmp[f'radiant_player_{i}_item5'] = player['item5']
radiant_net_worth += player["net_worth"]
radiant_assissts += player["assists"]
radiant_last_hits += player["last_hits"]
radiant_gold += player["gold"]
radiant_level += player["level"]
radiant_gpm += player["gold_per_min"]
radiant_xpm += player["xp_per_min"]
for i, player in enumerate(entry["scoreboard"]["dire"]["players"]):
# tmp[f'dire_player_{i}_kills'] = player['kills']
# tmp[f'dire_player_{i}_death'] = player['death']
# tmp[f'dire_player_{i}_assists'] = player['assists']
# tmp[f'dire_player_{i}_last_hits'] = player['last_hits']
# tmp[f'dire_player_{i}_gold'] = player['gold']
# tmp[f'dire_player_{i}_level'] = player['level']
# tmp[f'dire_player_{i}_gold_per_min'] = player['gold_per_min']
# tmp[f'dire_player_{i}_xp_per_min'] = player['xp_per_min']
# tmp[f'dire_player_{i}_net_worth'] = player['net_worth']
# tmp[f'dire_player_{i}_item0'] = player['item0']
# tmp[f'dire_player_{i}_item1'] = player['item1']
# tmp[f'dire_player_{i}_item2'] = player['item2']
# tmp[f'dire_player_{i}_item3'] = player['item3']
# tmp[f'dire_player_{i}_item4'] = player['item4']
# tmp[f'dire_player_{i}_item5'] = player['item5']
dire_net_worth += player["net_worth"]
dire_assissts += player["assists"]
dire_last_hits += player["last_hits"]
dire_gold += player["gold"]
dire_level += player["level"]
dire_gpm += player["gold_per_min"]
dire_xpm += player["xp_per_min"]
tmp["net_worth"] = radiant_net_worth - dire_net_worth
tmp["assissts"] = radiant_assissts - dire_assissts
tmp["last_hits"] = radiant_last_hits - dire_last_hits
tmp["gold"] = radiant_gold - dire_gold
tmp["level"] = radiant_level - dire_level
tmp["gpm"] = radiant_gpm - dire_gpm
tmp["xpm"] = radiant_xpm - dire_xpm
tmp["winner"] = entry["winner"]
matches_for_pd.append(tmp)
except Exception as e:
print(e, entry["match"]["match_id"])
df = pd.DataFrame(matches_for_pd)
print("shape:", df.shape)
df = df.dropna()
print("shape after dropna:", df.shape)
df = df.drop_duplicates()
print("shape after drop_duplicates:", df.shape)
df.to_csv(
f"part_8/new/{filenames[i_timeline]}_{df.shape[0]}x{df.shape[1]}_samples.csv",
index=False,
)