-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
177 lines (140 loc) · 5.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import ExtraTreesClassifier, GradientBoostingClassifier, HistGradientBoostingClassifier, RandomForestClassifier, AdaBoostClassifier
from sklearn.metrics import accuracy_score
import pickle
foldernames = ['10min', '20min', '30min']
filenames = ['10min_83723x46_samples.csv', '20min_72912x46_samples.csv', '30min_98468x46_samples.csv']
for i_f, filename in enumerate(filenames):
df = pd.read_csv(f'part_8/new/{filename}')
X = df.iloc[:, 0:-1].values
y = df.iloc[:, -1].values
le = LabelEncoder()
y = le.fit_transform(y)
for i, winner in enumerate(le.classes_):
print(i, '=', winner)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.1, random_state=1)
results = []
# --------------------------------
criterion = 'gini'
gini_classifier = DecisionTreeClassifier(criterion=criterion, random_state=1)
gini_classifier.fit(X_train, y_train)
y_pred = gini_classifier.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print('CART', acc)
results.append({
'classifier': 'CART',
'criterion': criterion,
'accuracy_score': acc
})
with open(f'part_8/trained_models/{foldernames[i_f]}/cart_classifier.pkl', 'wb') as f:
pickle.dump(gini_classifier, f)
# --------------------------------
criterion = 'entropy'
entropy_classifier = DecisionTreeClassifier(
criterion=criterion, random_state=1)
entropy_classifier.fit(X_train, y_train)
y_pred = entropy_classifier.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print('C4.5', acc)
results.append({
'classifier': 'C4.5',
'criterion': criterion,
'accuracy_score': acc
})
with open(f'part_8/trained_models/{foldernames[i_f]}/c4.5_classifier.pkl', 'wb') as f:
pickle.dump(entropy_classifier, f)
# --------------------------------
etc_results = []
et_classifier = ExtraTreesClassifier(
criterion='entropy', n_estimators=150, random_state=1)
et_classifier.fit(X_train, y_train)
y_pred = et_classifier.predict(X_test)
etc_results.append({
'criterion': 'entropy',
'n_estimators': 150,
'accuracy_score': accuracy_score(y_test, y_pred)})
result = max(etc_results, key=lambda x: x['accuracy_score'])
print('Extra Trees Classifier', result['accuracy_score'])
result['classifier'] = 'Extra Trees Classifier'
results.append(result)
with open(f'part_8/trained_models/{foldernames[i_f]}/et_classifier.pkl', 'wb') as f:
pickle.dump(et_classifier, f)
# --------------------------------
gb_results = []
gb_classifier = GradientBoostingClassifier(
loss='log_loss', n_estimators=50, learning_rate=1, criterion='friedman_mse', max_depth=4, random_state=1)
gb_classifier.fit(X_train, y_train)
y_pred = gb_classifier.predict(X_test)
gb_results.append({
'loss': 'log_loss',
'learning_rate': 1,
'n_estimators': 50,
'criterion': 'friedman_mse',
'max_depth': 4,
'accuracy_score': accuracy_score(y_test, y_pred)
})
result = max(gb_results, key=lambda x: x['accuracy_score'])
print('Gradient Boosting', result['accuracy_score'])
result['classifier'] = 'Gradient Boosting'
results.append(result)
with open(f'part_8/trained_models/{foldernames[i_f]}/gb_classifier.pkl', 'wb') as f:
pickle.dump(gb_classifier, f)
# --------------------------------
hgb_results = []
hgb_classifier = HistGradientBoostingClassifier(
learning_rate=0.2, max_iter=100, random_state=1)
hgb_classifier.fit(X_train, y_train)
y_pred = hgb_classifier.predict(X_test)
hgb_results.append({
'learning_rate': 0.2,
'max_iter': 100,
'accuracy_score': accuracy_score(y_test, y_pred)
})
result = max(hgb_results, key=lambda x: x['accuracy_score'])
print('Hist Gradient Boosting', result['accuracy_score'])
result['classifier'] = 'Hist Gradient Boosting'
results.append(result)
with open(f'part_8/trained_models/{foldernames[i_f]}/hgb_classifier.pkl', 'wb') as f:
pickle.dump(hgb_classifier, f)
# --------------------------------
rf_results = []
rf_classifier = RandomForestClassifier(
n_estimators=50, criterion='gini', random_state=1)
rf_classifier.fit(X_train, y_train)
y_pred = rf_classifier.predict(X_test)
rf_results.append({
'n_estimators': 50,
'criterion': 'gini',
'accuracy_score': accuracy_score(y_test, y_pred)
})
result = max(rf_results, key=lambda x: x['accuracy_score'])
print('Random Forest', result['accuracy_score'])
result['classifier'] = 'Random Forest'
results.append(result)
with open(f'part_8/trained_models/{foldernames[i_f]}/rf_classifier.pkl', 'wb') as f:
pickle.dump(rf_classifier, f)
# --------------------------------
ada_results = []
ab_classifier = AdaBoostClassifier(
n_estimators=50, learning_rate=0.1, algorithm='SAMME', random_state=0)
ab_classifier.fit(X_train, y_train)
y_pred = ab_classifier.predict(X_test)
ada_results.append({
'n_estimators': 50,
'learning_rate': 0.1,
'algorithm': 'SAMME.R',
'accuracy_score': accuracy_score(y_test, y_pred)
})
result = max(ada_results, key=lambda x: x['accuracy_score'])
print('Adaboost', result['accuracy_score'])
result['classifier'] = 'Adaboost'
results.append(result)
with open(f'part_8/trained_models/{foldernames[i_f]}/ab_classifier.pkl', 'wb') as f:
pickle.dump(ab_classifier, f)
with open(f'part_8/new/results.txt', 'a') as f:
f.write(f'{foldernames[i_f]}\n')
f.write(f'{results}\n')