-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscript_model.py
36 lines (29 loc) · 1.47 KB
/
script_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import argparse
import torch
from model.InferenceWrapper import ScriptTupleInferenceWrapper, ScriptInferenceWrapper
from model.build_model import build_model, add_architecture_args
from nn_utils.train_utils import load_matching_weights
from dataset.io_data_utils import smart_parse_args
def main():
parser = argparse.ArgumentParser()
add_architecture_args(parser)
parser.add_argument('--data', type=str, default=None, help="Path to a dataset (required for some lane detection models)")
parser.add_argument('--save_path', type=str, required=True)
parser.add_argument('--pretrained_model_path', type=str, nargs="+", required=True)
parser.add_argument('--cpu', action="store_true", help="Sometimes works when cuda doesn't. "
"when loading it later in C++, the model is then moved to GPU either way.")
args = smart_parse_args(parser)
model = build_model(args, data_parallel=False, scriptable=True)
if args.network in ["bisenetv2+lane"]:
model = ScriptTupleInferenceWrapper(model, args.model_width, args.model_height)
else:
model = ScriptInferenceWrapper(model, args.model_width, args.model_height)
load_matching_weights(model, args.pretrained_model_path)
model.eval()
if not args.cpu:
model = model.cuda()
with torch.jit.optimized_execution(True):
model = torch.jit.script(model)
torch.jit.save(model, args.save_path)
if __name__ == '__main__':
main()