-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_recommendations.py
executable file
·210 lines (190 loc) · 7.33 KB
/
my_recommendations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python
import numpy as np
from numpy import sqrt
# A dictionary of movie critics and their ratings of a small
# set of movies. Realistically, data would be in database
critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
'The Night Listener': 4.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}
# -----------------------------------
# Calculate Euclidean Distance for inter-person similarity
# Returns a distance-based similarity score for person 1 and person 2
# Value of 1 indicated perfect similarity
# Call to prefs refers to Python index of critics above
# From Python interpreter:
# import my_recommendations
# reload(my_recommendations)
# my_recommendations.sim_distance(critics, 'name', 'name')
def sim_distance(prefs,person1,person2):
# Get list of shared items
si = {}
for item in prefs[person1]:
if item in prefs[person2]:
si[item] = 1
# if the have no ratings in common, return 0
if len(si) == 0:
return 0
# add up the sum of squares of all the differences
sum_of_squares = sum([pow(prefs[person1][item] -
prefs[person2][item],2) for item in si])
return 1/(1 + sqrt(sum_of_squares))
# -------------------------------------------
# Returns the Pearson correlation coefficient for p1 and p2
# See above for Python interpreter commands
def sim_pearson(prefs,p1,p2):
# Get list of mutually rated items
si = {}
for item in prefs[p1]:
if item in prefs[p2]:
si[item] = 1
# Find the number of mutully rated items
n = len(si)
# if no ratings in common, return 0
if n == 0:
return 0
# Calculate Pearson correlation components
# Add up all preferences
sum1 = sum([prefs[p1][it] for it in si])
sum2 = sum([prefs[p2][it] for it in si])
# Sum the squares
sum1Sq = sum([pow(prefs[p1][it],2) for it in si])
sum2Sq = sum([pow(prefs[p2][it],2) for it in si])
# Sum up the products
pSum = sum([prefs[p1][it] * prefs[p2][it] for it in si])
# Calculate Pearson Score
num = pSum - (sum1 * sum2/n)
den = sqrt((sum1Sq - pow(sum1,2)/n)*(sum2Sq-pow(sum2,2)/n))
if den == 0:
return 0
r = num/den
return r
# ------------------------------
# Now that we have functions for ranking two people (above), create function
# that scores everyone against a given person and finds closest matches
# Returns best matches for person from the prefs dictionary
# Number of results and similarity function are optional params
def topMatches(prefs,person,n=5,similarity=sim_pearson):
scores = [(similarity(prefs,person,other),other)
for other in prefs if other!=person]
# Sort the list so the highest scores appear at the top
scores.sort( )
scores.reverse( )
return scores[0:n]
#---------------------------------
# Gets recommendations for a person by using a weighted
# average of every user's rankings
def getRecommendations(prefs,person,similarity=sim_pearson):
totals = {}
simSums = {}
for other in prefs:
# don't compare me to myself
if other == person:
continue
sim = similarity(prefs,person,other)
#ignore scores of zero or lower
if sim <= 0:
continue
for item in prefs[other]:
# only score movies that i have not seen
if item not in prefs[person] or prefs[person][item] == 0:
# Similarity * score
totals.setdefault(item,0)
totals[item]+= prefs[other][item] * sim
# Sum of similarities
simSums.setdefault(item,0)
simSums[item] += sim
# Create the normalized list
rankings = [(total/simSums[item],item) for item, total in totals.items()]
# Return the sorted list
rankings.sort()
rankings.reverse()
return rankings
# -------------------------------------
# Now i know how to find similar people and recommend products
# for a given person...
# What if you want to see which products are similar to each other
# e.g., shopping site when it does not know a lot about you
# Transform the critics dictionary
def transformPrefs(prefs):
result = {}
for person in prefs:
for item in prefs[person]:
result.setdefault(item,{})
# Flip item and person
result[item][person] = prefs[person][item]
return result
#-------------------------------------------------
# Item Based Collaborative Filtering
# Build the "item comparison dataset"
def calculateSimilarItems(prefs,n=10):
# Create dictionary of items showing which other items
# they are most similar to
result = {}
# Invert the preference matrix to be item-centric
itemPrefs = transformPrefs(prefs)
c = 0
for item in itemPrefs:
# Status updates for large datasets
c += 1
if c%100 == 0:
print "%d / %d" % (c, len(itemPrefs))
# find the most similar items to this one
scores = topMatches(itemPrefs,item, n=n,similarity=sim_distance)
result[item] = scores
return result
#----------------------------------------------------
# Now implement Item-based recommendations by building a table
# as was done with getRecommendations() - based on user recommendations
def getRecommendedItems(prefs,itemMatch,user):
userRatings=prefs[user]
scores= {}
totalSim = {}
# Loop over items rated by this user
for(item,rating) in userRatings.items():
# Loop over items similar to this one
# Note: item2 represents columns of unseen user movies
for (similarity,item2) in itemMatch[item]:
# Ignore if this user has already rated this item
if item2 in userRatings:
continue
# Weighted sum of rating times similarity
scores.setdefault(item2,0)
scores[item2]+= similarity * rating
# Sum of all the similarities
totalSim.setdefault(item2,0)
totalSim[item2]+= similarity
# Divide each total score by total weighting to get an average
rankings = [(score/totalSim[item],item) for item,score in scores.items()]
# Return the ranking form highest to lowest
rankings.sort()
rankings.reverse()
return rankings
#-------------------------------------------------
# Now working with MovieLens data
def loadMovieLens(path='/home/skerr/DataSets/ml-100k'):
# Get movie titles
movies = {}
for line in open(path+'/u.item'):
(id,title) = line.split('|')[0:2]
movies[id] = title
# Load data
prefs = {}
for line in open(path+'/u.data'):
(user,movieid,rating,ts) = line.split('\t')
prefs.setdefault(user,{})
prefs[user][movies[movieid]] = float(rating)
return prefs