diff --git a/src/main.py b/src/main.py index 243a31e..d0fd614 100644 --- a/src/main.py +++ b/src/main.py @@ -1,20 +1,21 @@ -from PIL import Image +import logging + +import numpy as np import torch import torch.nn as nn import torch.optim as optim -from torchvision import datasets, transforms from torch.utils.data import DataLoader -import numpy as np +from torchvision import datasets, transforms # Step 1: Load MNIST Data and Preprocess -transform = transforms.Compose([ - transforms.ToTensor(), - transforms.Normalize((0.5,), (0.5,)) -]) +transform = transforms.Compose( + [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))] +) -trainset = datasets.MNIST('.', download=True, train=True, transform=transform) +trainset = datasets.MNIST(".", download=True, train=True, transform=transform) trainloader = DataLoader(trainset, batch_size=64, shuffle=True) + # Step 2: Define the PyTorch Model class Net(nn.Module): def __init__(self): @@ -22,7 +23,7 @@ def __init__(self): self.fc1 = nn.Linear(28 * 28, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, 10) - + def forward(self, x): x = x.view(-1, 28 * 28) x = nn.functional.relu(self.fc1(x)) @@ -30,19 +31,31 @@ def forward(self, x): x = self.fc3(x) return nn.functional.log_softmax(x, dim=1) + # Step 3: Train the Model model = Net() optimizer = optim.SGD(model.parameters(), lr=0.01) criterion = nn.NLLLoss() +logging.basicConfig( + filename="training_errors.log", + level=logging.ERROR, + format="%(asctime)s %(levelname)s %(message)s", +) + # Training loop epochs = 3 for epoch in range(epochs): - for images, labels in trainloader: - optimizer.zero_grad() - output = model(images) - loss = criterion(output, labels) - loss.backward() - optimizer.step() - -torch.save(model.state_dict(), "mnist_model.pth") \ No newline at end of file + for i, (images, labels) in enumerate(trainloader): + try: + optimizer.zero_grad() + output = model(images) + loss = criterion(output, labels) + loss.backward() + optimizer.step() + except Exception as e: + logging.error( + "Error at epoch %s, batch %s: %s", epoch, i, str(e), exc_info=True + ) + +torch.save(model.state_dict(), "mnist_model.pth")