-
Notifications
You must be signed in to change notification settings - Fork 874
/
Copy pathDQN.py
143 lines (122 loc) · 4.77 KB
/
DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import gym
import matplotlib.pyplot as plt
import copy
# hyper-parameters
BATCH_SIZE = 128
LR = 0.01
GAMMA = 0.90
EPISILO = 0.9
MEMORY_CAPACITY = 2000
Q_NETWORK_ITERATION = 100
env = gym.make("CartPole-v0")
env = env.unwrapped
NUM_ACTIONS = env.action_space.n
NUM_STATES = env.observation_space.shape[0]
ENV_A_SHAPE = 0 if isinstance(env.action_space.sample(), int) else env.action_space.sample.shape
class Net(nn.Module):
"""docstring for Net"""
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(NUM_STATES, 50)
self.fc1.weight.data.normal_(0,0.1)
self.fc2 = nn.Linear(50,30)
self.fc2.weight.data.normal_(0,0.1)
self.out = nn.Linear(30,NUM_ACTIONS)
self.out.weight.data.normal_(0,0.1)
def forward(self,x):
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = F.relu(x)
action_prob = self.out(x)
return action_prob
class DQN():
"""docstring for DQN"""
def __init__(self):
super(DQN, self).__init__()
self.eval_net, self.target_net = Net(), Net()
self.learn_step_counter = 0
self.memory_counter = 0
self.memory = np.zeros((MEMORY_CAPACITY, NUM_STATES * 2 + 2))
# why the NUM_STATE*2 +2
# When we store the memory, we put the state, action, reward and next_state in the memory
# here reward and action is a number, state is a ndarray
self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=LR)
self.loss_func = nn.MSELoss()
def choose_action(self, state):
state = torch.unsqueeze(torch.FloatTensor(state), 0) # get a 1D array
if np.random.randn() <= EPISILO:# greedy policy
action_value = self.eval_net.forward(state)
action = torch.max(action_value, 1)[1].data.numpy()
action = action[0] if ENV_A_SHAPE == 0 else action.reshape(ENV_A_SHAPE)
else: # random policy
action = np.random.randint(0,NUM_ACTIONS)
action = action if ENV_A_SHAPE ==0 else action.reshape(ENV_A_SHAPE)
return action
def store_transition(self, state, action, reward, next_state):
transition = np.hstack((state, [action, reward], next_state))
index = self.memory_counter % MEMORY_CAPACITY
self.memory[index, :] = transition
self.memory_counter += 1
def learn(self):
#update the parameters
if self.learn_step_counter % Q_NETWORK_ITERATION ==0:
self.target_net.load_state_dict(self.eval_net.state_dict())
self.learn_step_counter+=1
#sample batch from memory
sample_index = np.random.choice(MEMORY_CAPACITY, BATCH_SIZE)
batch_memory = self.memory[sample_index, :]
batch_state = torch.FloatTensor(batch_memory[:, :NUM_STATES])
batch_action = torch.LongTensor(batch_memory[:, NUM_STATES:NUM_STATES+1].astype(int))
batch_reward = torch.FloatTensor(batch_memory[:, NUM_STATES+1:NUM_STATES+2])
batch_next_state = torch.FloatTensor(batch_memory[:,-NUM_STATES:])
#q_eval
q_eval = self.eval_net(batch_state).gather(1, batch_action)
q_next = self.target_net(batch_next_state).detach()
q_target = batch_reward + GAMMA * q_next.max(1)[0].view(BATCH_SIZE, 1)
loss = self.loss_func(q_eval, q_target)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def reward_func(env, x, x_dot, theta, theta_dot):
r1 = (env.x_threshold - abs(x))/env.x_threshold - 0.5
r2 = (env.theta_threshold_radians - abs(theta)) / env.theta_threshold_radians - 0.5
reward = r1 + r2
return reward
def main():
dqn = DQN()
episodes = 400
print("Collecting Experience....")
reward_list = []
plt.ion()
fig, ax = plt.subplots()
for i in range(episodes):
state = env.reset()
ep_reward = 0
while True:
env.render()
action = dqn.choose_action(state)
next_state, _ , done, info = env.step(action)
x, x_dot, theta, theta_dot = next_state
reward = reward_func(env, x, x_dot, theta, theta_dot)
dqn.store_transition(state, action, reward, next_state)
ep_reward += reward
if dqn.memory_counter >= MEMORY_CAPACITY:
dqn.learn()
if done:
print("episode: {} , the episode reward is {}".format(i, round(ep_reward, 3)))
if done:
break
state = next_state
r = copy.copy(reward)
reward_list.append(r)
ax.set_xlim(0,300)
#ax.cla()
ax.plot(reward_list, 'g-', label='total_loss')
plt.pause(0.001)
if __name__ == '__main__':
main()