-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathCodeSynthesis.cpp
1714 lines (1458 loc) · 64.5 KB
/
CodeSynthesis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- CodeSynthesis.cpp - Type Checking for Declarations ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for declarations.
//
//===----------------------------------------------------------------------===//
#include "CodeSynthesis.h"
#include "TypeCheckDecl.h"
#include "TypeCheckDistributed.h"
#include "TypeCheckObjC.h"
#include "TypeCheckType.h"
#include "TypeChecker.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/Availability.h"
#include "swift/AST/DistributedDecl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Defer.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
using namespace swift;
const bool IsImplicit = true;
Expr *swift::buildSelfReference(VarDecl *selfDecl,
SelfAccessorKind selfAccessorKind,
bool isLValue, Type convertTy) {
auto &ctx = selfDecl->getASTContext();
auto selfTy = selfDecl->getTypeInContext();
switch (selfAccessorKind) {
case SelfAccessorKind::Peer:
assert(!convertTy || convertTy->isEqual(selfTy));
return new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(), IsImplicit,
AccessSemantics::Ordinary,
isLValue ? LValueType::get(selfTy) : selfTy);
case SelfAccessorKind::Super: {
assert(!isLValue);
// Get the superclass type of self, looking through a metatype if needed.
auto isMetatype = false;
if (auto *metaTy = selfTy->getAs<MetatypeType>()) {
isMetatype = true;
selfTy = metaTy->getInstanceType();
}
selfTy = selfTy->getSuperclass();
if (!selfTy) {
// Error recovery path. We end up here if getSuperclassDecl() succeeds
// but getSuperclass() fails (because, for instance, a generic parameter
// of a generic nominal type cannot be resolved).
selfTy = ErrorType::get(ctx);
}
if (isMetatype)
selfTy = MetatypeType::get(selfTy);
auto *superRef =
new (ctx) SuperRefExpr(selfDecl, SourceLoc(), IsImplicit, selfTy);
// If no conversion type was specified, or we're already at that type, we're
// done.
if (!convertTy || convertTy->isEqual(selfTy) || selfTy->is<ErrorType>())
return superRef;
// Insert the appropriate expr to handle the upcast.
if (isMetatype) {
assert(convertTy->castTo<MetatypeType>()
->getInstanceType()
->isExactSuperclassOf(selfTy->getMetatypeInstanceType()));
return new (ctx) MetatypeConversionExpr(superRef, convertTy);
} else {
assert(convertTy->isExactSuperclassOf(selfTy));
return new (ctx) DerivedToBaseExpr(superRef, convertTy);
}
}
}
llvm_unreachable("bad self access kind");
}
Argument swift::buildSelfArgument(VarDecl *selfDecl,
SelfAccessorKind selfAccessorKind,
bool isMutable) {
auto &ctx = selfDecl->getASTContext();
auto *selfRef = buildSelfReference(selfDecl, selfAccessorKind, isMutable);
return isMutable ? Argument::implicitInOut(ctx, selfRef)
: Argument::unlabeled(selfRef);
}
/// Build an argument list that forwards references to the specified parameter
/// list.
ArgumentList *swift::buildForwardingArgumentList(ArrayRef<ParamDecl *> params,
ASTContext &ctx) {
SmallVector<Argument, 4> args;
for (auto *param : params) {
auto type = param->getTypeInContext();
Expr *ref = new (ctx) DeclRefExpr(param, DeclNameLoc(), /*implicit*/ true);
ref->setType(param->isInOut() ? LValueType::get(type) : type);
if (param->isInOut()) {
ref = new (ctx) InOutExpr(SourceLoc(), ref, type, /*isImplicit=*/true);
} else if (param->isVariadic()) {
assert(ref->getType()->isEqual(type));
ref = VarargExpansionExpr::createParamExpansion(ctx, ref);
}
args.emplace_back(SourceLoc(), param->getArgumentName(), ref);
}
return ArgumentList::createImplicit(ctx, args);
}
static void maybeAddMemberwiseDefaultArg(ParamDecl *arg, VarDecl *var,
ASTContext &ctx) {
// First and foremost, if this is a constant don't bother.
if (var->isLet())
return;
// If there's no parent pattern there's not enough structure to even perform
// this analysis. Just bail.
if (!var->getParentPattern())
return;
// We can only provide default values for patterns binding a single variable.
// i.e. var (a, b) = getSomeTuple() is not allowed.
if (!var->getParentPattern()->getSingleVar())
return;
// Whether we have explicit initialization.
bool isExplicitlyInitialized = false;
if (auto pbd = var->getParentPatternBinding()) {
const auto i = pbd->getPatternEntryIndexForVarDecl(var);
isExplicitlyInitialized = pbd->isExplicitlyInitialized(i);
}
// Whether we can default-initialize this property.
auto binding = var->getParentPatternBinding();
bool isDefaultInitializable =
var->getAttrs().hasAttribute<LazyAttr>() ||
(binding && binding->isDefaultInitializable());
// If this is neither explicitly initialized nor
// default-initializable, don't add anything.
if (!isExplicitlyInitialized && !isDefaultInitializable)
return;
// We can add a default value now.
// If the variable has a type T? and no initial value, return a nil literal
// default arg. All lazy variables return a nil literal as well. *Note* that
// the type will always be a sugared T? because we don't default init an
// explicit Optional<T>.
bool isNilInitialized =
var->getAttrs().hasAttribute<LazyAttr>() ||
(!isExplicitlyInitialized && isDefaultInitializable &&
var->getValueInterfaceType()->isOptional() &&
(var->getAttachedPropertyWrappers().empty() ||
var->isPropertyMemberwiseInitializedWithWrappedType()));
if (isNilInitialized) {
arg->setDefaultArgumentKind(DefaultArgumentKind::NilLiteral);
return;
}
// If there's a backing storage property, the memberwise initializer
// will be in terms of that.
VarDecl *backingStorageVar = var->getPropertyWrapperBackingProperty();
// Set the default value to the variable. When we emit this in silgen
// we're going to call the variable's initializer expression.
arg->setStoredProperty(backingStorageVar ? backingStorageVar : var);
arg->setDefaultArgumentKind(DefaultArgumentKind::StoredProperty);
}
/// Describes the kind of implicit constructor that will be
/// generated.
enum class ImplicitConstructorKind {
/// The default constructor, which default-initializes each
/// of the instance variables.
Default,
/// The default constructor of a distributed actor.
/// Similarly to a Default one it initializes each of the instance variables,
/// however it also implicitly gains an DistributedActorSystem parameter.
DefaultDistributedActor,
/// The memberwise constructor, which initializes each of
/// the instance variables from a parameter of the same type and
/// name.
Memberwise,
};
static ParamDecl *createMemberwiseInitParameter(DeclContext *DC,
SourceLoc paramLoc,
VarDecl *var) {
auto &ctx = var->getASTContext();
auto varInterfaceType = var->getValueInterfaceType();
bool isAutoClosure = false;
if (var->getAttrs().hasAttribute<LazyAttr>()) {
// If var is a lazy property, its value is provided for the underlying
// storage. We thus take an optional of the property's type. We only
// need to do this because the implicit initializer is added before all
// the properties are type checked. Perhaps init() synth should be
// moved later.
varInterfaceType = OptionalType::get(varInterfaceType);
} else if (Type backingPropertyType =
var->getPropertyWrapperBackingPropertyType()) {
// For a property that has a wrapper, writing the initializer
// with an '=' implies that the memberwise initializer should also
// accept a value of the original property type. Otherwise, the
// memberwise initializer will be in terms of the backing storage
// type.
if (var->isPropertyMemberwiseInitializedWithWrappedType()) {
varInterfaceType = var->getPropertyWrapperInitValueInterfaceType();
auto initInfo = var->getPropertyWrapperInitializerInfo();
isAutoClosure = initInfo.getWrappedValuePlaceholder()->isAutoClosure();
} else {
varInterfaceType = backingPropertyType;
}
}
Type resultBuilderType = var->getResultBuilderType();
if (resultBuilderType) {
// If the variable's type is structurally a function type, use that
// type. Otherwise, form a non-escaping function type for the function
// parameter.
bool isStructuralFunctionType =
varInterfaceType->lookThroughAllOptionalTypes()->is<AnyFunctionType>();
if (!isStructuralFunctionType) {
auto extInfo = ASTExtInfoBuilder().withNoEscape().build();
varInterfaceType = FunctionType::get({}, varInterfaceType, extInfo);
}
}
// Create the parameter.
auto *arg = new (ctx) ParamDecl(SourceLoc(), paramLoc, var->getName(),
paramLoc, var->getName(), DC);
arg->setSpecifier(ParamSpecifier::Default);
arg->setInterfaceType(varInterfaceType);
arg->setImplicit();
arg->setAutoClosure(isAutoClosure);
// Don't allow the parameter to accept temporary pointer conversions.
arg->setNonEphemeralIfPossible();
// Attach a result builder attribute if needed.
if (resultBuilderType) {
auto typeExpr = TypeExpr::createImplicit(resultBuilderType, ctx);
auto attr =
CustomAttr::create(ctx, SourceLoc(), typeExpr, /*implicit=*/true);
arg->getAttrs().add(attr);
}
maybeAddMemberwiseDefaultArg(arg, var, ctx);
return arg;
}
/// Create an implicit struct or class constructor.
///
/// \param decl The struct or class for which a constructor will be created.
/// \param ICK The kind of implicit constructor to create.
///
/// \returns The newly-created constructor, which has already been type-checked
/// (but has not been added to the containing struct or class).
static ConstructorDecl *createImplicitConstructor(NominalTypeDecl *decl,
ImplicitConstructorKind ICK,
ASTContext &ctx) {
assert(!decl->hasClangNode());
SourceLoc Loc = decl->getLoc();
auto accessLevel = AccessLevel::Internal;
// Determine the parameter type of the implicit constructor.
SmallVector<ParamDecl*, 8> params;
SmallVector<DefaultArgumentInitializer *, 8> defaultInits;
if (ICK == ImplicitConstructorKind::Memberwise) {
assert(isa<StructDecl>(decl) && "Only struct have memberwise constructor");
for (auto var : decl->getMemberwiseInitProperties()) {
accessLevel = std::min(accessLevel, var->getFormalAccess());
params.push_back(createMemberwiseInitParameter(decl, Loc, var));
}
} else if (ICK == ImplicitConstructorKind::DefaultDistributedActor) {
auto classDecl = dyn_cast<ClassDecl>(decl);
assert(classDecl && decl->isDistributedActor() &&
"Only 'distributed actor' type can gain implicit distributed actor init");
/// Add 'system' parameter to default init of distributed actors.
if (swift::ensureDistributedModuleLoaded(decl)) {
// copy access level of distributed actor init from the nominal decl
accessLevel = decl->getEffectiveAccess();
auto systemTy = getDistributedActorSystemType(classDecl);
// Create the parameter. API name is actorSystem, local name is system
auto *arg = new (ctx) ParamDecl(SourceLoc(), Loc, ctx.Id_actorSystem, Loc,
ctx.Id_system, decl);
arg->setSpecifier(ParamSpecifier::Default);
arg->setInterfaceType(systemTy);
arg->setImplicit();
params.push_back(arg);
}
}
auto paramList = ParameterList::create(ctx, params);
// Create the constructor.
DeclName name(ctx, DeclBaseName::createConstructor(), paramList);
auto *ctor =
new (ctx) ConstructorDecl(name, Loc,
/*Failable=*/false, /*FailabilityLoc=*/SourceLoc(),
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*ThrownType=*/TypeLoc(),
paramList, /*GenericParams=*/nullptr, decl);
// Mark implicit.
ctor->setImplicit();
ctor->setSynthesized();
ctor->setAccess(accessLevel);
if (ctx.LangOpts.hasFeature(Feature::IsolatedDefaultValues)) {
// If any of the type's actor-isolated properties:
// 1. Have non-Sendable type, or
// 2. Have an isolated initial value
// then the initializer must also be actor-isolated. If all
// isolated properties have Sendable type and a nonisolated
// default value, then the initializer can be nonisolated.
//
// These rules only apply for global actor isolation, because actor
// initializers apply Sendable checking to arguments at the call-site,
// and actor initializers do not run on the actor, so initial values
// cannot be actor-instance-isolated.
bool shouldAddNonisolated = true;
llvm::Optional<ActorIsolation> existingIsolation = llvm::None;
VarDecl *previousVar = nullptr;
// The memberwise init properties are also effectively what the
// default init uses, e.g. default initializers initialize via
// properties wrapped and init accessors.
for (auto var : decl->getMemberwiseInitProperties()) {
auto type = var->getTypeInContext();
auto isolation = getActorIsolation(var);
if (isolation.isGlobalActor()) {
if (!isSendableType(decl->getModuleContext(), type) ||
var->getInitializerIsolation().isGlobalActor()) {
// If different isolated stored properties require different
// global actors, it is impossible to initialize this type.
if (existingIsolation &&
*existingIsolation != isolation) {
ctx.Diags.diagnose(decl->getLoc(),
diag::conflicting_stored_property_isolation,
ICK == ImplicitConstructorKind::Memberwise,
decl->getDeclaredType(), *existingIsolation, isolation);
previousVar->diagnose(
diag::property_requires_actor,
previousVar->getDescriptiveKind(),
previousVar->getName(), *existingIsolation);
var->diagnose(
diag::property_requires_actor,
var->getDescriptiveKind(),
var->getName(), isolation);
}
existingIsolation = isolation;
previousVar = var;
shouldAddNonisolated = false;
}
}
}
if (shouldAddNonisolated) {
addNonIsolatedToSynthesized(decl, ctor);
}
}
if (ICK == ImplicitConstructorKind::Memberwise) {
ctor->setIsMemberwiseInitializer();
if (!ctx.LangOpts.hasFeature(Feature::IsolatedDefaultValues)) {
addNonIsolatedToSynthesized(decl, ctor);
}
}
// If we are defining a default initializer for a class that has a superclass,
// it overrides the default initializer of its superclass. Add an implicit
// 'override' attribute.
if (auto classDecl = dyn_cast<ClassDecl>(decl)) {
if (classDecl->getSuperclass())
ctor->getAttrs().add(new (ctx) OverrideAttr(/*IsImplicit=*/true));
}
return ctor;
}
/// Create a stub body that emits a fatal error message.
static std::pair<BraceStmt *, bool>
synthesizeStubBody(AbstractFunctionDecl *fn, void *) {
auto *ctor = cast<ConstructorDecl>(fn);
auto &ctx = ctor->getASTContext();
auto unimplementedInitDecl = ctx.getUnimplementedInitializer();
auto classDecl = ctor->getDeclContext()->getSelfClassDecl();
if (!unimplementedInitDecl) {
ctx.Diags.diagnose(classDecl->getLoc(),
diag::missing_unimplemented_init_runtime);
return { nullptr, true };
}
auto *staticStringDecl = ctx.getStaticStringDecl();
auto staticStringType = staticStringDecl->getDeclaredInterfaceType();
auto staticStringInit = ctx.getStringBuiltinInitDecl(staticStringDecl);
auto *uintDecl = ctx.getUIntDecl();
auto uintType = uintDecl->getDeclaredInterfaceType();
auto uintInit = ctx.getIntBuiltinInitDecl(uintDecl);
// Create a call to Swift._unimplementedInitializer
auto loc = classDecl->getLoc();
Expr *ref = new (ctx) DeclRefExpr(unimplementedInitDecl,
DeclNameLoc(loc),
/*Implicit=*/true);
ref->setType(unimplementedInitDecl->getInterfaceType()
->removeArgumentLabels(1));
llvm::SmallString<64> buffer;
StringRef fullClassName = ctx.AllocateCopy(
(classDecl->getModuleContext()->getName().str() +
"." +
classDecl->getName().str()).toStringRef(buffer));
auto *className = new (ctx) StringLiteralExpr(fullClassName, loc,
/*Implicit=*/true);
className->setBuiltinInitializer(staticStringInit);
assert(isa<ConstructorDecl>(className->getBuiltinInitializer().getDecl()));
className->setType(staticStringType);
auto *initName = new (ctx) MagicIdentifierLiteralExpr(
MagicIdentifierLiteralExpr::Function, loc, /*Implicit=*/true);
initName->setType(staticStringType);
initName->setBuiltinInitializer(staticStringInit);
auto *file = new (ctx) MagicIdentifierLiteralExpr(
MagicIdentifierLiteralExpr::FileID, loc, /*Implicit=*/true);
file->setType(staticStringType);
file->setBuiltinInitializer(staticStringInit);
auto *line = new (ctx) MagicIdentifierLiteralExpr(
MagicIdentifierLiteralExpr::Line, loc, /*Implicit=*/true);
line->setType(uintType);
line->setBuiltinInitializer(uintInit);
auto *column = new (ctx) MagicIdentifierLiteralExpr(
MagicIdentifierLiteralExpr::Column, loc, /*Implicit=*/true);
column->setType(uintType);
column->setBuiltinInitializer(uintInit);
auto *argList = ArgumentList::forImplicitUnlabeled(
ctx, {className, initName, file, line, column});
auto *call = CallExpr::createImplicit(ctx, ref, argList);
call->setType(ctx.getNeverType());
call->setThrows(nullptr);
SmallVector<ASTNode, 2> stmts;
stmts.push_back(call);
stmts.push_back(new (ctx) ReturnStmt(SourceLoc(), /*Result=*/nullptr));
return { BraceStmt::create(ctx, SourceLoc(), stmts, SourceLoc(),
/*implicit=*/true),
/*isTypeChecked=*/true };
}
/// Clone the base class initializer's generic parameter list, but change the
/// depth of the generic parameters to be one greater than the depth of the
/// subclass.
static GenericParamList *
createDesignatedInitOverrideGenericParams(ASTContext &ctx,
ClassDecl *classDecl,
ConstructorDecl *superclassCtor) {
auto *genericParams = superclassCtor->getGenericParams();
// If genericParams is non-null, the base class initializer has its own
// generic parameters. Otherwise, it is non-generic with a contextual
// 'where' clause.
if (genericParams == nullptr)
return nullptr;
unsigned depth = 0;
if (auto classSig = classDecl->getGenericSignature())
depth = classSig.getGenericParams().back()->getDepth() + 1;
SmallVector<GenericTypeParamDecl *, 4> newParams;
for (auto *param : genericParams->getParams()) {
auto *newParam = GenericTypeParamDecl::createImplicit(
classDecl, param->getName(), depth, param->getIndex(),
param->isParameterPack(), param->isOpaqueType());
newParams.push_back(newParam);
}
return GenericParamList::create(ctx, SourceLoc(),
newParams, SourceLoc(),
ArrayRef<RequirementRepr>(), SourceLoc());
}
/// True if the type has an opaque clang implementation, meaning it is imported
/// and doesn't have an \c \@objcImplementation extension.
static bool hasClangImplementation(const NominalTypeDecl *decl) {
return decl->hasClangNode() && !decl->getObjCImplementationDecl();
}
/// True if \p member is in the main body of \p ty, where the "main body" is
/// either the type itself (the usual case) or its \c \@objcImplementation
/// extension (if one is present).
static bool isInMainBody(ValueDecl *member, NominalTypeDecl *ty) {
return member->getDeclContext() ==
ty->getImplementationContext()->getAsGenericContext();
}
static void
configureInheritedDesignatedInitAttributes(ClassDecl *classDecl,
ConstructorDecl *ctor,
ConstructorDecl *superclassCtor,
ASTContext &ctx) {
assert(isInMainBody(ctor, classDecl));
AccessLevel access = classDecl->getFormalAccess();
access = std::max(access, AccessLevel::Internal);
access = std::min(access, superclassCtor->getFormalAccess());
ctor->setAccess(access);
AccessScope superclassInliningAccessScope =
superclassCtor->getFormalAccessScope(/*useDC*/nullptr,
/*usableFromInlineAsPublic=*/true);
if (superclassInliningAccessScope.isPublic()) {
if (superclassCtor->getAttrs().hasAttribute<InlinableAttr>()) {
// Inherit the @inlinable attribute.
auto *clonedAttr = new (ctx) InlinableAttr(/*implicit=*/true);
ctor->getAttrs().add(clonedAttr);
} else if (access == AccessLevel::Internal && !superclassCtor->isDynamic()){
// Inherit the @usableFromInline attribute.
auto *clonedAttr = new (ctx) UsableFromInlineAttr(/*implicit=*/true);
ctor->getAttrs().add(clonedAttr);
}
}
// Inherit the @discardableResult attribute.
if (superclassCtor->getAttrs().hasAttribute<DiscardableResultAttr>()) {
auto *clonedAttr = new (ctx) DiscardableResultAttr(/*implicit=*/true);
ctor->getAttrs().add(clonedAttr);
}
// Inherit the rethrows attribute.
if (superclassCtor->getAttrs().hasAttribute<RethrowsAttr>()) {
auto *clonedAttr = new (ctx) RethrowsAttr(/*implicit=*/true);
ctor->getAttrs().add(clonedAttr);
}
// If the superclass has its own availability, make sure the synthesized
// constructor is only as available as its superclass's constructor.
if (superclassCtor->getAttrs().hasAttribute<AvailableAttr>()) {
SmallVector<const Decl *, 2> asAvailableAs;
// We don't have to look at enclosing contexts of the superclass constructor,
// because designated initializers must always be defined in the superclass
// body, and we already enforce that a superclass is at least as available as
// a subclass.
asAvailableAs.push_back(superclassCtor);
if (auto *parentDecl = classDecl->getInnermostDeclWithAvailability()) {
asAvailableAs.push_back(parentDecl);
}
AvailabilityInference::applyInferredAvailableAttrs(
ctor, asAvailableAs, ctx);
}
// Wire up the overrides.
ctor->setOverriddenDecl(superclassCtor);
if (superclassCtor->isRequired())
ctor->getAttrs().add(new (ctx) RequiredAttr(/*IsImplicit=*/false));
else
ctor->getAttrs().add(new (ctx) OverrideAttr(/*IsImplicit=*/false));
// If the superclass constructor is @objc but the subclass constructor is
// not representable in Objective-C, add @nonobjc implicitly.
llvm::Optional<ForeignAsyncConvention> asyncConvention;
llvm::Optional<ForeignErrorConvention> errorConvention;
if (superclassCtor->isObjC() &&
!isRepresentableInObjC(ctor, ObjCReason::MemberOfObjCSubclass,
asyncConvention, errorConvention))
ctor->getAttrs().add(new (ctx) NonObjCAttr(/*isImplicit=*/true));
}
static std::pair<BraceStmt *, bool>
synthesizeDesignatedInitOverride(AbstractFunctionDecl *fn, void *context) {
auto *ctor = cast<ConstructorDecl>(fn);
auto &ctx = ctor->getASTContext();
auto *superclassCtor = (ConstructorDecl *) context;
// Reference to super.init.
auto *selfDecl = ctor->getImplicitSelfDecl();
auto superArg = buildSelfArgument(selfDecl, SelfAccessorKind::Super,
/*isMutable*/ false);
SubstitutionMap subs;
if (auto *genericEnv = fn->getGenericEnvironment())
subs = genericEnv->getForwardingSubstitutionMap();
subs = SubstitutionMap::getOverrideSubstitutions(superclassCtor, fn)
.subst(subs);
ConcreteDeclRef ctorRef(superclassCtor, subs);
auto type = superclassCtor->getInitializerInterfaceType().subst(subs);
auto *ctorRefExpr =
new (ctx) OtherConstructorDeclRefExpr(ctorRef, DeclNameLoc(),
IsImplicit, type);
if (auto *funcTy = type->getAs<FunctionType>())
type = funcTy->getResult();
auto *superclassCtorRefExpr =
DotSyntaxCallExpr::create(ctx, ctorRefExpr, SourceLoc(), superArg, type);
superclassCtorRefExpr->setThrows(nullptr);
auto *bodyParams = ctor->getParameters();
auto *ctorArgs = buildForwardingArgumentList(bodyParams->getArray(), ctx);
auto *superclassCallExpr =
CallExpr::createImplicit(ctx, superclassCtorRefExpr, ctorArgs);
if (auto *funcTy = type->getAs<FunctionType>())
type = funcTy->getResult();
superclassCallExpr->setType(type);
if (auto thrownInterfaceType = ctor->getEffectiveThrownErrorType()) {
Type superThrownType = ctor->mapTypeIntoContext(*thrownInterfaceType);
superclassCallExpr->setThrows(
ThrownErrorDestination::forMatchingContextType(superThrownType));
} else {
superclassCallExpr->setThrows(nullptr);
}
Expr *expr = superclassCallExpr;
if (superclassCtor->hasAsync()) {
expr = new (ctx) AwaitExpr(SourceLoc(), expr, type, /*implicit=*/true);
}
if (superclassCtor->hasThrows()) {
expr = new (ctx) TryExpr(SourceLoc(), expr, type, /*implicit=*/true);
}
auto *rebindSelfExpr =
new (ctx) RebindSelfInConstructorExpr(expr, selfDecl);
SmallVector<ASTNode, 2> stmts;
stmts.push_back(rebindSelfExpr);
stmts.push_back(new (ctx) ReturnStmt(SourceLoc(), /*Result=*/nullptr));
return { BraceStmt::create(ctx, SourceLoc(), stmts, SourceLoc(),
/*implicit=*/true),
/*isTypeChecked=*/true };
}
/// The kind of designated initializer to synthesize.
enum class DesignatedInitKind {
/// A stub initializer, which is not visible to name lookup and
/// merely aborts at runtime.
Stub,
/// An initializer that simply chains to the corresponding
/// superclass initializer.
Chaining
};
/// Create a new initializer that overrides the given designated
/// initializer.
///
/// \param classDecl The subclass in which the new initializer will
/// be declared.
///
/// \param superclassCtor The superclass initializer for which this
/// routine will create an override.
///
/// \param kind The kind of initializer to synthesize.
///
/// \returns the newly-created initializer that overrides \p
/// superclassCtor.
static ConstructorDecl *
createDesignatedInitOverride(ClassDecl *classDecl,
ConstructorDecl *superclassCtor,
DesignatedInitKind kind,
ASTContext &ctx) {
// Lookup will sometimes give us initializers that are from the ancestors of
// our immediate superclass. So, from the superclass constructor, we look
// one level up to the enclosing type context which will either be a class
// or an extension. We can use the type declared in that context to check
// if it's our immediate superclass and give up if we didn't.
//
// FIXME: Remove this when lookup of initializers becomes restricted to our
// immediate superclass.
auto *superclassDecl = superclassCtor->getDeclContext()->getSelfClassDecl();
if (classDecl->getSuperclassDecl() != superclassDecl)
return nullptr;
auto *genericParams = createDesignatedInitOverrideGenericParams(
ctx, classDecl, superclassCtor);
auto superclassCtorSig = superclassCtor->getGenericSignature();
// Compute a generic signature for the initializer, and a substitution map
// from the superclass initializer signature to the initializer generic
// signature.
auto subMap = SubstitutionMap::getOverrideSubstitutions(
superclassDecl, classDecl, superclassCtorSig, genericParams);
auto genericSig = ctx.getOverrideGenericSignature(
superclassDecl, classDecl, superclassCtorSig, genericParams);
assert(!subMap.hasArchetypes());
if (superclassCtorSig) {
auto *genericEnv = genericSig.getGenericEnvironment();
// If the base class initializer has a 'where' clause, it might impose
// requirements on the base class's own generic parameters that are not
// satisfied by the derived class. In this case, we don't want to inherit
// this initializer; there's no way to call it on the derived class.
auto checkResult = TypeChecker::checkGenericArguments(
classDecl->getParentModule(),
superclassCtorSig.getRequirements(),
[&](Type type) -> Type {
auto substType = type.subst(subMap);
return GenericEnvironment::mapTypeIntoContext(genericEnv, substType);
});
if (checkResult != CheckGenericArgumentsResult::Success)
return nullptr;
}
// Create the initializer parameter list by cloning the superclass initializer
// parameter list and applying the substitution map.
OptionSet<ParameterList::CloneFlags> options
= (ParameterList::Implicit |
ParameterList::Inherited |
ParameterList::NamedArguments);
auto *superclassParams = superclassCtor->getParameters();
auto *bodyParams = superclassParams->clone(ctx, options);
// If the superclass is generic, we need to map the superclass constructor's
// parameter types into the generic context of our class.
//
// We might have to apply substitutions, if for example we have a declaration
// like 'class A : B<Int>'.
for (unsigned idx : range(superclassParams->size())) {
auto *superclassParam = superclassParams->get(idx);
auto *bodyParam = bodyParams->get(idx);
auto paramTy = superclassParam->getInterfaceType();
auto substTy = paramTy.subst(subMap);
bodyParam->setInterfaceType(substTy);
}
Type thrownType;
if (auto superThrownType = superclassCtor->getThrownInterfaceType()) {
thrownType = superThrownType.subst(subMap);
}
// Create the initializer declaration, inheriting the name,
// failability, and throws from the superclass initializer.
auto implCtx = classDecl->getImplementationContext()->getAsGenericContext();
auto ctor =
new (ctx) ConstructorDecl(superclassCtor->getName(),
classDecl->getBraces().Start,
superclassCtor->isFailable(),
/*FailabilityLoc=*/SourceLoc(),
/*Async=*/superclassCtor->hasAsync(),
/*AsyncLoc=*/SourceLoc(),
/*Throws=*/superclassCtor->hasThrows(),
/*ThrowsLoc=*/SourceLoc(),
TypeLoc::withoutLoc(thrownType),
bodyParams, genericParams, implCtx);
ctor->setImplicit();
// Set the interface type of the initializer.
ctor->setGenericSignature(genericSig);
ctor->setImplicitlyUnwrappedOptional(
superclassCtor->isImplicitlyUnwrappedOptional());
configureInheritedDesignatedInitAttributes(classDecl, ctor,
superclassCtor, ctx);
if (kind == DesignatedInitKind::Stub) {
// Make this a stub implementation.
ctor->setBodySynthesizer(synthesizeStubBody);
// Note that this is a stub implementation.
ctor->setStubImplementation(true);
return ctor;
}
// Form the body of a chaining designated initializer.
assert(kind == DesignatedInitKind::Chaining);
ctor->setBodySynthesizer(synthesizeDesignatedInitOverride, superclassCtor);
return ctor;
}
/// Diagnose a missing required initializer.
static void diagnoseMissingRequiredInitializer(
ClassDecl *classDecl,
ConstructorDecl *superInitializer,
bool downgradeToWarning,
ASTContext &ctx) {
// Find the location at which we should insert the new initializer.
SourceLoc insertionLoc;
SourceLoc indentationLoc;
for (auto member : classDecl->getMembers()) {
// If we don't have an indentation location yet, grab one from this
// member.
if (indentationLoc.isInvalid()) {
indentationLoc = member->getLoc();
}
// We only want to look at explicit constructors.
auto ctor = dyn_cast<ConstructorDecl>(member);
if (!ctor)
continue;
if (ctor->isImplicit())
continue;
insertionLoc = ctor->getEndLoc();
indentationLoc = ctor->getLoc();
}
// If no initializers were listed, start at the opening '{' for the class.
if (insertionLoc.isInvalid()) {
insertionLoc = classDecl->getBraces().Start;
}
if (indentationLoc.isInvalid()) {
indentationLoc = classDecl->getBraces().End;
}
// Adjust the insertion location to point at the end of this line (i.e.,
// the start of the next line).
insertionLoc = Lexer::getLocForEndOfLine(ctx.SourceMgr,
insertionLoc);
// Find the indentation used on the indentation line.
StringRef extraIndentation;
StringRef indentation = Lexer::getIndentationForLine(
ctx.SourceMgr, indentationLoc, &extraIndentation);
// Pretty-print the superclass initializer into a string.
// FIXME: Form a new initializer by performing the appropriate
// substitutions of subclass types into the superclass types, so that
// we get the right generic parameters.
std::string initializerText;
{
PrintOptions options;
options.PrintImplicitAttrs = false;
// Render the text.
llvm::raw_string_ostream out(initializerText);
{
ExtraIndentStreamPrinter printer(out, indentation);
printer.printNewline();
// If there is no explicit 'required', print one.
bool hasExplicitRequiredAttr = false;
if (auto requiredAttr
= superInitializer->getAttrs().getAttribute<RequiredAttr>())
hasExplicitRequiredAttr = !requiredAttr->isImplicit();
if (!hasExplicitRequiredAttr)
printer << "required ";
superInitializer->print(printer, options);
}
// Add a dummy body.
out << " {\n";
out << indentation << extraIndentation << "fatalError(\"";
superInitializer->getName().printPretty(out);
out << " has not been implemented\")\n";
out << indentation << "}\n";
}
// Complain.
ctx.Diags.diagnose(insertionLoc, diag::required_initializer_missing,
superInitializer->getName(),
superInitializer->getDeclContext()->getDeclaredInterfaceType())
.warnUntilSwiftVersionIf(downgradeToWarning, 6)
.fixItInsert(insertionLoc, initializerText);
ctx.Diags.diagnose(findNonImplicitRequiredInit(superInitializer),
diag::required_initializer_here);
}
/// FIXME: This is temporary until we come up with a way to overcome circularity
/// issues.
///
/// This method is intended to be used only in places that expect
/// lazy and property wrapper backing storage synthesis has happened
/// or can tolerate absence of such properties.
///
/// \param typeDecl The nominal type to enumerate current properties and their
/// auxiliary vars for.
///
/// \param callback The callback to be called for each property and auxiliary
/// var associated with the given type. The callback should return `true` to
/// indicate that enumeration should continue and `false` otherwise.
///
/// \returns true which indicates "failure" if callback returns `false`
/// at least once.
static bool enumerateCurrentPropertiesAndAuxiliaryVars(
NominalTypeDecl *typeDecl, llvm::function_ref<bool(VarDecl *)> callback) {
for (auto *member :
typeDecl->getImplementationContext()->getCurrentMembers()) {
if (auto *var = dyn_cast<VarDecl>(member)) {
if (!callback(var))
return true;
}
bool hadErrors = false;
member->visitAuxiliaryDecls([&](Decl *auxDecl) {
if (auto *auxVar = dyn_cast<VarDecl>(auxDecl)) {
hadErrors |= !callback(auxVar);
}
});
if (hadErrors)
return true;
}
return false;
}
bool AreAllStoredPropertiesDefaultInitableRequest::evaluate(
Evaluator &evaluator, NominalTypeDecl *decl) const {
assert(!hasClangImplementation(decl));
std::multimap<VarDecl *, VarDecl *> initializedViaInitAccessor;
decl->collectPropertiesInitializableByInitAccessors(
initializedViaInitAccessor);
llvm::SmallPtrSet<PatternBindingDecl *, 4> checked;
return !enumerateCurrentPropertiesAndAuxiliaryVars(
decl, [&](VarDecl *property) {
auto *pbd = property->getParentPatternBinding();
if (!pbd || !checked.insert(pbd).second)
return true;
// If a stored property lacks an initial value and if there is no way to
// synthesize an initial value (e.g. for an optional) then we suppress
// generation of the default initializer.
// Static variables are irrelevant.
if (pbd->isStatic())
return true;
for (auto idx : range(pbd->getNumPatternEntries())) {
bool HasStorage = false;
bool CheckDefaultInitializer = true;
pbd->getPattern(idx)->forEachVariable([&HasStorage,
&CheckDefaultInitializer,
&initializedViaInitAccessor](
VarDecl *VD) {
// If one of the bound variables is @NSManaged, go ahead no matter
// what.
if (VD->getAttrs().hasAttribute<NSManagedAttr>())
CheckDefaultInitializer = false;
// If this property is covered by one or more init accessor(s)
// check whether at least one of them is initializable.
auto initAccessorProperties =
llvm::make_range(initializedViaInitAccessor.equal_range(VD));
if (llvm::any_of(initAccessorProperties, [&](const auto &entry) {
auto *property = entry.second->getParentPatternBinding();
return property->isInitialized(0) ||
property->isDefaultInitializable();
}))
return;