-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
120 lines (103 loc) · 3.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import torch
import torchvision
from torch.utils.data import random_split
from torchvision.datasets import ImageFolder
from torchvision import transforms
from torchvision.transforms import ToTensor
from torch.utils.data.dataloader import DataLoader
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
def fit(epochs, lr, model, train_loader, val_loader, opt_func):
"""
method for training the model.
run number of epochs through the entire training data set and fir the neural network.
every second epoch, evaluate model using the performance metric.
"""
history = []
optimizer = opt_func(model.parameters(), lr)
for epoch in range(epochs):
# Training Phase
model.train()
train_losses = []
for batch in train_loader:
images, labels = batch
out = model(images) # Generate predictions
loss = F.cross_entropy(out, labels) # Calculate loss
train_losses.append(loss)
loss.backward()
optimizer.step()
optimizer.zero_grad()
# Validation phase every second epoch
if epoch % 2:
result = evaluate(model, val_loader)
result['train_loss'] = torch.stack(train_losses).mean().item()
print("Epoch [{}], train_loss: {:.4f}, val_loss: {:.4f}, val_acc: {:.4f}".format(
epoch, result['train_loss'], result['val_loss'], result['val_acc']))
history.append(result)
return history
def performance_metric(outputs, labels):
"""
metric for assesing the performance by using the accuracy.
"""
_, preds = torch.max(outputs, dim=1)
return torch.tensor(torch.sum(preds == labels).item() / len(preds))
@torch.no_grad()
def evaluate(model, val_loader):
"""
method for evaluating the trained model on the validation set.
"""
model.eval()
outputs = []
for batch in val_loader:
images, labels = batch
out = model(images)
loss = F.cross_entropy(out, labels)
acc = performance_metric(out, labels)
outputs.append({'val_loss': loss.detach(), 'val_acc': acc})
batch_losses = [x['val_loss'] for x in outputs]
epoch_loss = torch.stack(batch_losses).mean()
batch_accs = [x['val_acc'] for x in outputs]
epoch_acc = torch.stack(batch_accs).mean()
return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()}
def get_default_device():
"""
Select either GPU if possible or CPU instead
"""
if torch.cuda.is_available():
return torch.device('cuda')
else:
return torch.device('cpu')
def to_device(data, device):
"""
move data to either GPU or CPU
"""
if isinstance(data, (list,tuple)):
return [to_device(x, device) for x in data]
return data.to(device, non_blocking=True)
class DeviceDataLoader():
"""
Use dataloader to process datasets and move it to a device
"""
def __init__(self, dl, device):
self.dl = dl
self.device = device
def __iter__(self):
"""
Provides a batch of data
"""
for b in self.dl:
yield to_device(b, self.device)
def __len__(self):
"""
Batch size
"""
return len(self.dl)
def plot_accuracies(history,path):
accuracies = [x['val_acc'] for x in history]
plt.plot(accuracies, '-x')
plt.xlabel('epoch')
plt.ylabel('accuracy')
plt.title('Accuracy vs. No. of epochs')
plt.savefig("val.png")