@@ -36,12 +36,14 @@ curl "http://127.0.0.1:8080/generate?size=50mb&format=json&pretty=true"
36
36
## API Parameters
37
37
38
38
- ** size** : Specifies the target size of the generated content (required)
39
+
39
40
- Supported units: KB, MB, GB, TB
40
41
- Example: ` 1500mb ` , ` 2gb ` , ` 500kb `
41
42
42
43
- ** format** : Specifies the output format (optional)
44
+
43
45
- Supported values: ` json ` (default), ` csv `
44
-
46
+
45
47
- ** pretty** : Enable pretty-printing for JSON output (optional)
46
48
- Supported values: ` true ` , ` false ` (default)
47
49
@@ -66,10 +68,6 @@ The generated data contains business records with the following fields:
66
68
- Implements SIMD (Single Instruction, Multiple Data) operations for faster string processing
67
69
- Distributes workload across available CPU cores
68
70
69
- ## Known Issues
70
-
71
- - Progress indicator may not accurately reflect the exact percentage of completion
72
-
73
71
## Performance Optimization Opportunities
74
72
75
73
While this generator is performant, there are several opportunities for optimization that contributors could assist. Each section below describes the issue, potential solutions, and implementation approaches being researched.
@@ -79,11 +77,13 @@ While this generator is performant, there are several opportunities for optimiza
79
77
** Issue** : The current progress tracking mechanism updates and prints after every chunk generation, causing unnecessary I/O overhead.
80
78
81
79
** Potential Solutions** :
80
+
82
81
- Implement time-based or percentage-based thresholds for progress updates
83
82
- Use an atomic counter for internal tracking with less frequent display updates
84
83
- Add a configuration option to disable progress tracking for maximum performance
85
84
86
85
** Implementation Approach** :
86
+
87
87
``` rust
88
88
use std :: sync :: {Arc , Mutex };
89
89
use std :: time :: {Duration , Instant };
@@ -105,7 +105,7 @@ impl ThrottledProgress {
105
105
106
106
pub fn update (& self , bytes : usize ) {
107
107
self . inner. update (bytes );
108
-
108
+
109
109
// Only print progress at specified intervals
110
110
let mut last_update = self . last_update. lock (). unwrap ();
111
111
if last_update . elapsed () >= self . update_interval {
@@ -116,36 +116,18 @@ impl ThrottledProgress {
116
116
}
117
117
```
118
118
119
- ### 2. Channel Configuration Optimization
120
-
121
- ** Issue** : The synchronous channel with zero capacity (` std_mpsc::sync_channel(0) ` ) forces producers to block until consumers read each message.
122
-
123
- ** Potential Solutions** :
124
- - Experiment with different channel capacities to find optimal throughput
125
- - Implement a more sophisticated producer-consumer pattern
126
- - Consider using crossbeam channels for potentially better performance
127
-
128
- ** Implementation Approach** :
129
- ``` rust
130
- // In main.rs, replace the sync_channel with configurable capacity
131
- let channel_capacity = 4 ; // Experiment with different values
132
- let (chunk_tx , chunk_rx ) = std_mpsc :: sync_channel (channel_capacity );
133
-
134
- // For more advanced scenarios, consider crossbeam channels:
135
- // use crossbeam_channel as cb;
136
- // let (chunk_tx, chunk_rx) = cb::bounded(channel_capacity);
137
- ```
138
-
139
- ### 3. Memory Management Improvements
119
+ ### 2. Memory Management Improvements
140
120
141
121
** Issue** : Large buffer allocations may cause memory pressure, especially for huge data generation tasks.
142
122
143
123
** Potential Solutions** :
124
+
144
125
- Implement a buffer pool to reuse allocated memory
145
126
- Fine-tune the ` OPTIMAL_CHUNK_SIZE ` and ` MAX_RECORDS_PER_CHUNK ` constants
146
127
- Add configurable memory limits to prevent excessive allocations
147
128
148
129
** Implementation Approach** :
130
+
149
131
``` rust
150
132
use bytes :: {BytesMut , Bytes };
151
133
use std :: sync :: {Arc , Mutex };
@@ -158,23 +140,23 @@ struct BufferPool {
158
140
impl BufferPool {
159
141
pub fn new (default_capacity : usize , initial_count : usize ) -> Arc <Self > {
160
142
let mut buffers = Vec :: with_capacity (initial_count );
161
-
143
+
162
144
// Pre-allocate some buffers
163
145
for _ in 0 .. initial_count {
164
146
buffers . push (BytesMut :: with_capacity (default_capacity ));
165
147
}
166
-
148
+
167
149
Arc :: new (Self {
168
150
buffers : Mutex :: new (buffers ),
169
151
default_capacity ,
170
152
})
171
153
}
172
-
154
+
173
155
pub fn get_buffer (& self ) -> BytesMut {
174
156
let mut pool = self . buffers. lock (). unwrap ();
175
157
pool . pop (). unwrap_or_else (|| BytesMut :: with_capacity (self . default_capacity))
176
158
}
177
-
159
+
178
160
pub fn return_buffer (& self , mut buffer : BytesMut ) {
179
161
buffer . clear (); // Reset position but keep capacity
180
162
let mut pool = self . buffers. lock (). unwrap ();
@@ -183,16 +165,18 @@ impl BufferPool {
183
165
}
184
166
```
185
167
186
- ### 4 . Adaptive Chunking Strategy
168
+ ### 3 . Adaptive Chunking Strategy
187
169
188
170
** Issue** : Fixed chunk sizes may not be optimal for all data patterns and hardware configurations.
189
171
190
172
** Potential Solutions** :
173
+
191
174
- Implement adaptive chunk sizing based on system resources and request size
192
175
- Add runtime configuration options for chunk size parameters
193
176
- Create a feedback mechanism that adjusts chunk size based on processing speed
194
177
195
178
** Implementation Approach** :
179
+
196
180
``` rust
197
181
// In StreamGenerator, add fields to track performance
198
182
pub struct StreamGenerator <'a > {
@@ -205,26 +189,26 @@ impl<'a> StreamGenerator<'a> {
205
189
// In generate_chunk method
206
190
pub fn generate_chunk (& mut self ) -> Option <Bytes > {
207
191
let start_time = Instant :: now ();
208
-
192
+
209
193
// Adjust chunk_target based on previous performance
210
194
let mut chunk_target = self . chunk_size. min (OPTIMAL_CHUNK_SIZE );
211
-
195
+
212
196
if let Some (last_duration ) = self . last_chunk_duration {
213
197
// If previous chunk was too slow, reduce size
214
198
if last_duration > self . target_chunk_duration * 1.2 {
215
199
chunk_target = (chunk_target as f64 * 0.8 ) as u64 ;
216
- }
200
+ }
217
201
// If previous chunk was fast, increase size
218
202
else if last_duration < self . target_chunk_duration * 0.8 {
219
203
chunk_target = (chunk_target as f64 * 1.2 ) as u64 ;
220
204
}
221
205
}
222
-
206
+
223
207
// ... existing chunk generation logic ...
224
-
208
+
225
209
// Record duration for next adjustment
226
210
self . last_chunk_duration = Some (start_time . elapsed ());
227
-
211
+
228
212
// Return the generated chunk
229
213
if ! buffer . is_empty () {
230
214
Some (buffer . into ())
@@ -235,16 +219,18 @@ impl<'a> StreamGenerator<'a> {
235
219
}
236
220
```
237
221
238
- ### 5 . SIMD Optimization
222
+ ### 4 . SIMD Optimization
239
223
240
224
** Issue** : SIMD operations may not be optimized for all hardware platforms.
241
225
242
226
** Potential Solutions** :
227
+
243
228
- Add conditional compilation for different CPU architectures
244
229
- Create fallback paths for platforms where SIMD operations might be slower
245
230
- Benchmark different SIMD implementations to find the most efficient approach
246
231
247
232
** Implementation Approach** :
233
+
248
234
``` rust
249
235
// Using conditional compilation for SIMD optimization
250
236
#[cfg(target_feature = " avx2" )]
@@ -266,71 +252,18 @@ pub fn process_string_simd(input: &[u8]) -> Vec<u8> {
266
252
}
267
253
```
268
254
269
- ### 6. Backpressure Handling
270
-
271
- ** Issue** : The current implementation might not provide adequate backpressure for very large data generations.
272
-
273
- ** Potential Solutions** :
274
- - Implement a more sophisticated flow control mechanism
275
- - Add configurable rate limiting
276
- - Create an adaptive system that responds to consumer consumption rates
277
-
278
- ** Implementation Approach** :
279
- ``` rust
280
- use std :: time :: {Duration , Instant };
281
- use tokio :: sync :: mpsc :: {channel, Sender };
282
-
283
- pub struct RateLimitedChannel <T > {
284
- tx : Sender <T >,
285
- rate_limit : usize , // items per second
286
- window_start : Instant ,
287
- items_in_window : usize ,
288
- }
289
-
290
- impl <T > RateLimitedChannel <T > {
291
- pub fn new (tx : Sender <T >, rate_limit : usize ) -> Self {
292
- Self {
293
- tx ,
294
- rate_limit ,
295
- window_start : Instant :: now (),
296
- items_in_window : 0 ,
297
- }
298
- }
299
-
300
- pub async fn send (& mut self , item : T ) -> Result <(), tokio :: sync :: mpsc :: error :: SendError <T >> {
301
- // Check if we need to start a new window
302
- let elapsed = self . window_start. elapsed ();
303
- if elapsed >= Duration :: from_secs (1 ) {
304
- // Reset window
305
- self . window_start = Instant :: now ();
306
- self . items_in_window = 0 ;
307
- }
308
-
309
- // Check if we've exceeded our rate limit
310
- if self . items_in_window >= self . rate_limit {
311
- let sleep_time = Duration :: from_secs (1 ). checked_sub (elapsed ). unwrap_or_default ();
312
- tokio :: time :: sleep (sleep_time ). await ;
313
- self . window_start = Instant :: now ();
314
- self . items_in_window = 0 ;
315
- }
316
-
317
- // Send item and update counter
318
- self . items_in_window += 1 ;
319
- self . tx. send (item ). await
320
- }
321
- }
322
- ```
323
-
324
- ### 7. Thread Pool Configuration
255
+ ### 5. Thread Pool Configuration
325
256
326
257
** Issue** : Using ` num_cpus::get() ` for thread count might not be optimal for all workloads.
327
258
328
259
** Potential Solutions** :
260
+
329
261
- Add configuration options for thread pool size
330
262
- Implement workload-based thread scaling
331
263
- Create a more sophisticated work-stealing algorithm for better CPU utilization
332
264
333
265
** Implementation Approach** :
266
+
334
267
``` rust
335
268
// In main.rs
336
269
async fn main () -> std :: io :: Result <()> {
@@ -339,7 +272,7 @@ async fn main() -> std::io::Result<()> {
339
272
. ok ()
340
273
. and_then (| s | s . parse :: <usize >(). ok ())
341
274
. unwrap_or_else (|| num_cpus :: get ());
342
-
275
+
343
276
println! (" Starting server at http://127.0.0.1:8080" );
344
277
println! (" Using {} worker threads" , workers );
345
278
@@ -351,16 +284,18 @@ async fn main() -> std::io::Result<()> {
351
284
}
352
285
```
353
286
354
- ### 8 . Cache Optimization
287
+ ### 6 . Cache Optimization
355
288
356
289
** Issue** : Current cache alignment strategies may not be optimal across different CPU architectures.
357
290
358
291
** Potential Solutions** :
292
+
359
293
- Profile and optimize memory access patterns
360
294
- Improve data structure alignment
361
295
- Implement more efficient padding strategies
362
296
363
297
** Implementation Approach** :
298
+
364
299
``` rust
365
300
use std :: alloc :: {Layout , alloc, dealloc};
366
301
@@ -375,19 +310,19 @@ impl<T> AlignedVec<T> {
375
310
pub fn with_capacity (capacity : usize ) -> Self {
376
311
let size = std :: mem :: size_of :: <T >() * capacity ;
377
312
let align = 64 ; // Cache line size
378
-
313
+
379
314
unsafe {
380
315
let layout = Layout :: from_size_align_unchecked (size , align );
381
316
let ptr = alloc (layout ) as * mut T ;
382
-
317
+
383
318
Self {
384
319
ptr ,
385
320
len : 0 ,
386
321
capacity ,
387
322
}
388
323
}
389
324
}
390
-
325
+
391
326
// Implement other vector methods...
392
327
}
393
328
@@ -416,4 +351,3 @@ If you'd like to implement one of these optimizations or have other improvements
416
351
5 . Submit a pull request
417
352
418
353
For larger changes, consider opening an issue first to discuss your approach.
419
-
0 commit comments