|
18 | 18 | import io.github.mandar2812.dynaml.probability.distributions.UnivariateGaussian
|
19 | 19 | import spire.implicits._
|
20 | 20 |
|
| 21 | + val dump_dir = home / 'Manuscripts / "phd-thesis" / 'data |
| 22 | + |
21 | 23 | //For p order auto-regressive dynamics
|
22 | 24 | val p = 3
|
23 | 25 | val num_sample_paths = 10
|
|
71 | 73 | GaussianSpectralKernel.getEncoderforBreezeDV(p)
|
72 | 74 | )
|
73 | 75 |
|
74 |
| - |
75 | 76 | val linear_coeff = (0d, 0d)
|
76 | 77 | val quadratic_coeff = (-0.01d, -0.75d, 0d)
|
77 | 78 |
|
|
140 | 141 | linear_coeff
|
141 | 142 | )
|
142 | 143 |
|
143 |
| - |
144 | 144 | maternKernel.block("p")
|
145 | 145 |
|
146 | 146 | //Define a gaussian process for GP Time Series models.
|
|
164 | 164 |
|
165 | 165 | //Generate samples for GP process on explicit time. Matern(p + 1/2)
|
166 | 166 | val samples_gp_explicit =
|
167 |
| - y_explicit.iid(10).draw.map(s => s.toBreezeVector.toArray.toSeq).toSeq |
| 167 | + y_explicit |
| 168 | + .iid(num_sample_paths) |
| 169 | + .draw |
| 170 | + .map(s => s.toBreezeVector.toArray.toSeq) |
| 171 | + .toSeq |
168 | 172 |
|
169 | 173 | //Generate samples for GP-NAR process in a recursive manner
|
170 | 174 | val ys_ar_rec = RandomVariable[Seq[Double]](() => {
|
|
197 | 201 | .scanLeft(
|
198 | 202 | u0
|
199 | 203 | )((y: DenseVector[Double], _) => {
|
200 |
| - val y_new: Double = quadratic_vec_trend(w)(y) + math.sqrt(0.5)*y0.draw |
| 204 | + val y_new: Double = quadratic_vec_trend(w)(y) + math |
| 205 | + .sqrt(0.5) * y0.draw |
201 | 206 | DenseVector(Array(y_new) ++ y(0 to -2).toArray)
|
202 | 207 | })
|
203 | 208 | .toSeq
|
|
236 | 241 | if (cp._1 >= 0d && cp._2 != 0) f"+${cp._1}%3.2f*y(t-${cp._2 + 1})"
|
237 | 242 | else f"${cp._1}%3.2f*y(t-${cp._2 + 1})"
|
238 | 243 | } else if (cp._1 >= 0d)
|
239 |
| - f"+${cp._1}%3.2f*y(t-${indices.head + 1})*y(t-${indices.last + 1})" |
240 |
| - else f"${cp._1}%3.2f*y(t-${indices.head + 1})*y(t-${indices.last + 1})" |
| 244 | + f"+${cp._1}%3.2f*y(t-${indices.head + 1})*y(t-${indices.last})" |
| 245 | + else f"${cp._1}%3.2f*y(t-${indices.head + 1})*y(t-${indices.last})" |
241 | 246 | }
|
242 | 247 | )
|
243 | 248 | .reduceLeft(_ ++ _)
|
|
276 | 281 | .partition(train_split)
|
277 | 282 |
|
278 | 283 | val markov_chain_samples = dtfdata.tf_dataset(
|
279 |
| - markov_chain_train_data.concatenate(markov_chain_first_sample.training_dataset), |
| 284 | + markov_chain_train_data.concatenate( |
| 285 | + markov_chain_first_sample.training_dataset |
| 286 | + ), |
280 | 287 | markov_chain_first_sample.test_dataset
|
281 | 288 | )
|
282 | 289 |
|
|
323 | 330 | Seq("Time Series", "MAP Prediction", "Lower Error Bar", "Upper Error Bar")
|
324 | 331 | )
|
325 | 332 |
|
| 333 | + def dump_files(file_dump_dir: Path) = { |
| 334 | + |
| 335 | + val predictions_file = file_dump_dir / "predictions.csv" |
| 336 | + |
| 337 | + val map = xs |
| 338 | + .takeRight(test_split_size) |
| 339 | + .zip(test_preds) |
| 340 | + .map(p => s"""${p._1},${p._2},"map"""") |
| 341 | + |
| 342 | + val lb = xs |
| 343 | + .takeRight(test_split_size) |
| 344 | + .zip(lower_bar) |
| 345 | + .map(p => s"""${p._1},${p._2},"lower"""") |
| 346 | + |
| 347 | + val ub = xs |
| 348 | + .takeRight(test_split_size) |
| 349 | + .zip(upper_bar) |
| 350 | + .map(p => s"""${p._1},${p._2},"upper"""") |
| 351 | + |
| 352 | + write(predictions_file, (gt ++ map ++ lb ++ ub).mkString("\n")) |
| 353 | + |
| 354 | + val arp_samples_lines = samples_markov.zipWithIndex.flatMap( |
| 355 | + zs => xs.zip(zs._1).map(x => s"""${x._1},${x._2},"path_${zs._2 + 1}"""") |
| 356 | + ) |
| 357 | + val arp_file = file_dump_dir / "narp_samples.csv" |
| 358 | + write(arp_file, arp_samples_lines.mkString("\n")) |
| 359 | + |
| 360 | + val gp_exp_lines = samples_gp_explicit.zipWithIndex.flatMap( |
| 361 | + zs => xs.zip(zs._1).map(x => s"""${x._1},${x._2},"path_${zs._2 + 1}"""") |
| 362 | + ) |
| 363 | + |
| 364 | + val gp_explicit_file = file_dump_dir / "gp_explicit_samples.csv" |
| 365 | + write(gp_explicit_file, gp_exp_lines.mkString("\n")) |
| 366 | + |
| 367 | + val gp_ar_lines = samples_ar_rec.zipWithIndex.flatMap( |
| 368 | + zs => xs.zip(zs._1).map(x => s"""${x._1},${x._2},"path_${zs._2 + 1}"""") |
| 369 | + ) |
| 370 | + |
| 371 | + val gp_ar_file = file_dump_dir / "gp_ar_samples.csv" |
| 372 | + write(gp_ar_file, gp_ar_lines.mkString("\n")) |
| 373 | + |
| 374 | + } |
| 375 | + |
326 | 376 | }
|
0 commit comments