Skip to content

Commit 67940b9

Browse files
committed
Minor mods to GP Time Series worksheet
1 parent b4e6ebc commit 67940b9

File tree

1 file changed

+57
-7
lines changed

1 file changed

+57
-7
lines changed

scripts/gpTimeSeries.sc

+57-7
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,8 @@
1818
import io.github.mandar2812.dynaml.probability.distributions.UnivariateGaussian
1919
import spire.implicits._
2020

21+
val dump_dir = home / 'Manuscripts / "phd-thesis" / 'data
22+
2123
//For p order auto-regressive dynamics
2224
val p = 3
2325
val num_sample_paths = 10
@@ -71,7 +73,6 @@
7173
GaussianSpectralKernel.getEncoderforBreezeDV(p)
7274
)
7375

74-
7576
val linear_coeff = (0d, 0d)
7677
val quadratic_coeff = (-0.01d, -0.75d, 0d)
7778

@@ -140,7 +141,6 @@
140141
linear_coeff
141142
)
142143

143-
144144
maternKernel.block("p")
145145

146146
//Define a gaussian process for GP Time Series models.
@@ -164,7 +164,11 @@
164164

165165
//Generate samples for GP process on explicit time. Matern(p + 1/2)
166166
val samples_gp_explicit =
167-
y_explicit.iid(10).draw.map(s => s.toBreezeVector.toArray.toSeq).toSeq
167+
y_explicit
168+
.iid(num_sample_paths)
169+
.draw
170+
.map(s => s.toBreezeVector.toArray.toSeq)
171+
.toSeq
168172

169173
//Generate samples for GP-NAR process in a recursive manner
170174
val ys_ar_rec = RandomVariable[Seq[Double]](() => {
@@ -197,7 +201,8 @@
197201
.scanLeft(
198202
u0
199203
)((y: DenseVector[Double], _) => {
200-
val y_new: Double = quadratic_vec_trend(w)(y) + math.sqrt(0.5)*y0.draw
204+
val y_new: Double = quadratic_vec_trend(w)(y) + math
205+
.sqrt(0.5) * y0.draw
201206
DenseVector(Array(y_new) ++ y(0 to -2).toArray)
202207
})
203208
.toSeq
@@ -236,8 +241,8 @@
236241
if (cp._1 >= 0d && cp._2 != 0) f"+${cp._1}%3.2f*y(t-${cp._2 + 1})"
237242
else f"${cp._1}%3.2f*y(t-${cp._2 + 1})"
238243
} else if (cp._1 >= 0d)
239-
f"+${cp._1}%3.2f*y(t-${indices.head + 1})*y(t-${indices.last + 1})"
240-
else f"${cp._1}%3.2f*y(t-${indices.head + 1})*y(t-${indices.last + 1})"
244+
f"+${cp._1}%3.2f*y(t-${indices.head + 1})*y(t-${indices.last})"
245+
else f"${cp._1}%3.2f*y(t-${indices.head + 1})*y(t-${indices.last})"
241246
}
242247
)
243248
.reduceLeft(_ ++ _)
@@ -276,7 +281,9 @@
276281
.partition(train_split)
277282

278283
val markov_chain_samples = dtfdata.tf_dataset(
279-
markov_chain_train_data.concatenate(markov_chain_first_sample.training_dataset),
284+
markov_chain_train_data.concatenate(
285+
markov_chain_first_sample.training_dataset
286+
),
280287
markov_chain_first_sample.test_dataset
281288
)
282289

@@ -323,4 +330,47 @@
323330
Seq("Time Series", "MAP Prediction", "Lower Error Bar", "Upper Error Bar")
324331
)
325332

333+
def dump_files(file_dump_dir: Path) = {
334+
335+
val predictions_file = file_dump_dir / "predictions.csv"
336+
337+
val map = xs
338+
.takeRight(test_split_size)
339+
.zip(test_preds)
340+
.map(p => s"""${p._1},${p._2},"map"""")
341+
342+
val lb = xs
343+
.takeRight(test_split_size)
344+
.zip(lower_bar)
345+
.map(p => s"""${p._1},${p._2},"lower"""")
346+
347+
val ub = xs
348+
.takeRight(test_split_size)
349+
.zip(upper_bar)
350+
.map(p => s"""${p._1},${p._2},"upper"""")
351+
352+
write(predictions_file, (gt ++ map ++ lb ++ ub).mkString("\n"))
353+
354+
val arp_samples_lines = samples_markov.zipWithIndex.flatMap(
355+
zs => xs.zip(zs._1).map(x => s"""${x._1},${x._2},"path_${zs._2 + 1}"""")
356+
)
357+
val arp_file = file_dump_dir / "narp_samples.csv"
358+
write(arp_file, arp_samples_lines.mkString("\n"))
359+
360+
val gp_exp_lines = samples_gp_explicit.zipWithIndex.flatMap(
361+
zs => xs.zip(zs._1).map(x => s"""${x._1},${x._2},"path_${zs._2 + 1}"""")
362+
)
363+
364+
val gp_explicit_file = file_dump_dir / "gp_explicit_samples.csv"
365+
write(gp_explicit_file, gp_exp_lines.mkString("\n"))
366+
367+
val gp_ar_lines = samples_ar_rec.zipWithIndex.flatMap(
368+
zs => xs.zip(zs._1).map(x => s"""${x._1},${x._2},"path_${zs._2 + 1}"""")
369+
)
370+
371+
val gp_ar_file = file_dump_dir / "gp_ar_samples.csv"
372+
write(gp_ar_file, gp_ar_lines.mkString("\n"))
373+
374+
}
375+
326376
}

0 commit comments

Comments
 (0)