-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBatch_etch_model_version11.py
979 lines (776 loc) · 37.4 KB
/
Batch_etch_model_version11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
import numpy as np
import matplotlib as mpl
import matplotlib.cm as cmx
import matplotlib.pyplot as plt
import cv2
import pyvista as pv
import open3d as o3d
import time
import etch_sim_utilities_v3 as utils
import scipy.signal as sg
import os
from matplotlib.path import Path
from mpl_toolkits.mplot3d import axes3d
from shapely.geometry.polygon import Polygon
from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import splprep, splev
from sys import getsizeof
from scipy import ndimage
from itertools import product
mpl.style.use('default')
"""
Written by Nicolas Castano with contributions from Seth Cordts
Model continuous etching into silicon wafer on the PT-DSE tool in the SNF
based known etch rates.
Data is stored in ordered dictionary with keys as specific step, kept in the
order in which it was created:
etch_grid = {'init': [pv.PolyData(mask_cont_0), pv.PolyData(mask_cont_1),
pv.PolyData(mask_cont_2), ...],
global_step_0: [pv.PolyData(mask_cont_0), ne
pv.PolyData(mask_cont_1),
pv.PolyData(mask_cont_2), ...],
global_step_N: [pv.PolyData(mask_cont_0)]}
"""
# %% define recipe
# ex: {'step1':{'bosch':13,'iso':100,'cylces':7},
# 'step2':{'bosch':240,'iso':None,'cycles':240},
# 'step3':{'bosch':None,'iso':70,'cycles':1}}
#recipe_steps = {'step1':{'bosch':13,'iso':100,'cycles':7},
# 'step2':{'bosch':240,'iso':None,'cycles':240},
# 'step3':{'bosch':None,'iso':70,'cycles':1}}
#recipe_steps = {'step0':{'bosch':7,'iso':5,'cycles':2}}
#recipe_steps = {'step01':{'bosch':15,'iso':100,'cycles':7},
## 'step02':{'bosch':300,'iso':None,'cycles':300},
# 'step03':{'bosch':None,'iso':100,'cycles':1}}
recipe_steps = {'step01':{'bosch':12,'iso':100,'cycles':4},
'step02':{'bosch':None,'iso':1000,'cycles':1}}
# recipe_steps = {'step01':{'bosch':None,'iso':700,'cycles':1}}
# recipe_steps = {'step00':{'bosch':40,'iso':None,'cycles':40},
# 'step01':{'bosch':None,'iso':525,'cycles':1}}
# %% user inputs
# load mask
master_dir = 'C:/Users/Seth Cordts/OneDrive - Leland Stanford Junior University/TangLab/Papers/microDicer/Simulation/'
im_dir = master_dir + 'masks/'
im_file = 'mask_WXC10R7_rot45.png'
horiz_to_vert_rate_ratio_sweep = [0.8, 0.6]
alpha_f_sweep = [0.5]
cell_size_sweep = [7] # microns
C_etch_sweep = [1.9]
params = [horiz_to_vert_rate_ratio_sweep, alpha_f_sweep, cell_size_sweep, C_etch_sweep]
all_param_combos = list(product(*params))
KOI = ['step01_bosch-iso01_bosch002_isotime0', 'step01_bosch-iso04_bosch012_isotime104', 'step02_iso01_isotime320', 'step02_iso01_isotime800', 'step02_iso01_isotime992', 'step02_iso01_isotime1000']
print(all_param_combos)
for par in all_param_combos:
horiz_to_vert_rate_ratio = par[0]
alpha_f = par[1]
cell_size = par[2]
C_etch = par[3]
plot_state_dir = master_dir + 'v12_2serr_states_'+ im_file.split('.png')[0]+str(horiz_to_vert_rate_ratio)+"_"+str(alpha_f)+"_"+str(cell_size)+"_"+str(C_etch)+"/"
if not os.path.exists(plot_state_dir):
os.makedirs(plot_state_dir)
plot_z_dir = master_dir + 'v12_2serr_z_'+im_file.split('.png')[0]+str(horiz_to_vert_rate_ratio)+"_"+str(alpha_f)+"_"+str(cell_size)+"_"+str(C_etch)+"/"
if not os.path.exists(plot_z_dir):
os.makedirs(plot_z_dir)
pixel_um_conv = 212/100 # mask_WXC7R5
# pixel_um_conv = 236/148
# pixel_um_conv = 97.5/73.5 # mask_WXC7R5_rot45
theta_rot = np.pi/4
# read in mask image and define contour
im_path = im_dir + im_file
curr_im = cv2.imread(im_path, cv2.IMREAD_ANYDEPTH)
curr_im = cv2.GaussianBlur(curr_im,(3,3),0)
rgb_im = cv2.cvtColor(curr_im, cv2.COLOR_GRAY2RGB)
conts, hier = cv2.findContours(curr_im, cv2.RETR_LIST,
cv2.CHAIN_APPROX_NONE)
conts_im = cv2.drawContours(rgb_im, conts, -1, (0,255,0),3)
# show the contour to verify
dummy_i = im_file.find('.png')
out_file = im_dir + im_file[:dummy_i] + '_out' + im_file[dummy_i:]
cv2.imwrite(out_file, conts_im)
cell_vol = 1#cell_size**3
wafer_thickness = 525 # microns
center_to_surface = wafer_thickness - cell_size/2
h = curr_im.shape[0]
w = curr_im.shape[1]
contour_read_step = 5
topo_im = np.zeros_like(curr_im)
window_len = 7 # for smoothing of mask contour read
# smoothing kernel
kernel_shape = (3,3)
kernel = np.full(kernel_shape, 1/np.prod(kernel_shape))
kern = np.array([[1,1,1],[1,1,1],[1,1,1]])
# %% etch rate functions
a = 0.1715
b = 0.001
def vert_rate(z):
# a = 0.5
a = 0.1715
b = 0.001
return a*np.exp(-b*z)
def horiz_rate(z):
return horiz_to_vert_rate_ratio*vert_rate(z)
def bosch_vert_step(z):
return 0.84 - 0.1/wafer_thickness*z
#bosch_vert_step = 0.84 # um/step
#horiz_rate = 0.09# vert_rate*0.6#90/600 # vert_rate*0.6 # um/s
# %% determine time step from cell size and etch rate
t_start = 0 # seconds
t_step = np.int(np.floor(0.3*cell_size/vert_rate(0)))
param_dict = {"recipe_steps":recipe_steps, "im_file" :im_file, "pixel_um_conv =":pixel_um_conv, "theta_rot":theta_rot, "alpha_f":alpha_f, "cell_size":cell_size, "horiz_to_vert_rate_ratio":horiz_to_vert_rate_ratio, "etch rate (a)":a, "etch rate(b)":b,"C_etch":C_etch,"t_step":t_step}
paramName = os.path.join(plot_z_dir, "parameters.txt")
with open(paramName, 'w')as f:
for key, value in param_dict.items():
print(key, ' : ', value, file = f)
# %% make mask paths
# initialize global topo data container following data structure
# indicated in the script header
# construct global data container; this is a ordered dictionary so later we
# can loop over keys and ensure that
etch_grid, total_iso_time = utils.define_steps(recipe_steps, t_start, t_step)
n_steps = len(list(etch_grid.keys()))
neigh_mem = []
exp_mem = []
rm_mem = []
# construct mask paths and check cell centers are within masks
# path objects used for determining if point is within mask
mask_paths = {}
# build initial geometries from mask that will be tracked through solution
print('building initial features')
x_min, x_max, y_min, y_max = np.inf, -np.inf, np.inf, -np.inf
for c, cont in enumerate(conts):
x = []
y = []
# gather points in mask contours
for p, point in enumerate(cont):
if p%contour_read_step== 0:
# translate point so mask centered at 0,0
temp_x = point[0][0]/pixel_um_conv - (w/pixel_um_conv)/2
temp_y = point[0][1]/pixel_um_conv - (h/pixel_um_conv)/2
x.append(temp_x)
y.append(temp_y)
if temp_x < x_min: x_min = temp_x
if temp_x > x_max: x_max = temp_x
if temp_y > y_max: y_max = temp_y
if temp_y < y_min: y_min = temp_y
# force last point to be on top of first point to close the polygon
# remove redundant points
x[-1] = x[0]
y[-1] = y[0]
# smooth contour with spline
points = np.hstack((np.reshape(np.array(x),[len(x),1]),
np.reshape(np.array(y),[len(y),1])))
tck, u = splprep(points.T, u=None, s=0.0, per=1)
u_new = np.linspace(u.min(), u.max(), len(cont))
x_spline, y_spline = splev(u_new, tck, der=0)
points = np.hstack((np.reshape(np.array(x_spline),[len(x_spline),1]),
np.reshape(np.array(y_spline),[len(y_spline),1])))
# make polygon objects
mask_poly = Polygon(points)
mask_poly.exterior
# make path objects (has nice contains_points method)
mask_paths[c] = Path(mask_poly.exterior,closed=True)
# this just means theres no buffer region around the feature
buff_mask = mask_paths[c]
# %% initilalize arrays for states, coords, and norms
# if abs(x_min) > x_max:
# x_max = abs(x_min)
# else:
# x_min = -x_max
# if abs(y_min) > y_max:
# y_max = abs(y_min)
# else:
# y_min = -y_max
x_mid = x_min + (x_max - x_min)/2
y_mid = y_min + (y_max - y_min)/2
# adjust cell_size
n_indices = np.ceil((x_max - x_min)/cell_size)
cell_size = (x_max - x_min)/n_indices
buffer = horiz_rate(0) * (total_iso_time*7)
n_indices = np.ceil(buffer/cell_size)
buffer = n_indices*cell_size
x_axis = np.arange(x_min-cell_size-buffer,
x_max+cell_size+buffer,
cell_size,dtype=np.float32)
y_axis = np.arange(y_min-cell_size-buffer,
y_max+cell_size+buffer,
cell_size,dtype=np.float32)
# x_axis = np.arange(x_max+cell_size+buffer,
# x_min-cell_size-buffer,
# -cell_size,dtype=np.float32)
# y_axis = np.arange(y_max+cell_size+buffer,
# y_min-cell_size-buffer,
# -cell_size,dtype=np.float32)
z_axis = np.arange(0-cell_size,
wafer_thickness+cell_size,
cell_size,dtype=np.float32)
# first concatenate paths for easy min dist operations
concat_mask_verts = None
for c in mask_paths:
pts = np.hstack((mask_paths[c].vertices,
np.ones((mask_paths[c].vertices.shape[0],1)) * z_axis[-2]))
try:
concat_mask_verts = np.vstack((concat_mask_verts,pts))
except:
concat_mask_verts = pts
coords = np.meshgrid(x_axis, y_axis, z_axis)
# rotate 45 degrees for rot45 mask
temp_x = np.cos(theta_rot)*coords[0] - np.sin(theta_rot)*coords[1]
temp_y = np.sin(theta_rot)*coords[0] + np.cos(theta_rot)*coords[1]
coords[0] = temp_x
coords[1] = temp_y
grid_shape = coords[0].shape
states = np.ones_like(coords[0],dtype=np.int) * 2
phis = np.ones_like(coords[0],dtype=np.float32) * 10
norms = np.empty(grid_shape,dtype=object)
ii = range(grid_shape[0])
jj = range(grid_shape[1])
kk = range(grid_shape[2])
# set the top slice to -1
exposed_indices = []
exposed_indices_set = set(exposed_indices)
# cordinates in the x, y confines of mask and weights for bosch etching
known_in_mask_indices = {}
rm_indices = []
neigh_indices = set()
#### add cells to exposed list
# check for cells whose centers are clearly in the mask
for i in ii:
if i % int(grid_shape[0]/10) == 0:
print('checking in mask points, row %i of %i' %
(i,grid_shape[0]))
for j in jj:
pt = [coords[0][i,j,0], coords[1][i,j,0]]
in_mask = utils.is_in_mask(pt[0],pt[1],mask_paths)
# if the cell center is clearly in mask path save and assign phi
if in_mask == True:
temp_tuple = tuple(pt[0:2])
known_in_mask_indices[tuple([i,j])] = 1
# initial normals pointing up
norms[i,j,-2] = np.array([0,0,1])
# add to exposed_coords set
exposed_indices.append([i,j,kk[-2]])
exposed_indices_set.add(tuple([i,j,kk[-2]]))
# initialize state by signed distance from the mask etch front
states[i,j,kk[-2]] = 0
states[i,j,kk[-1]] = -1
states[i,j,kk[-3]] = 1
phis[i,j,kk[-2]] = 0.5*cell_size
# adjust phi for initial exposed cells (ie the boundary phis)
dummy = phis
mp = concat_mask_verts
for ind_i, index in enumerate(exposed_indices):
i,j,k = index[0], index[1], index[2]
x,y,z = coords[0][i,j,k], coords[1][i,j,k], coords[2][i,j,k]
dist = np.sqrt(np.sum((mp - np.array([x,y,z]))**2, axis=1))
min_dist_i = dist.argmin()
if dist[min_dist_i] < abs(phis[i,j,k]):
dummy[i,j,k] = dist[min_dist_i]
known_in_mask_indices[tuple([i,j])] = 1/(cell_size/2) * dummy[i,j,k]
phis = dummy
#### add cells to neighbors
dummy = phis
for index in exposed_indices:
i,j,k = index[0], index[1], index[2]
potential_neigh = utils.list_neighbor_indices([i,j,k])
for neigh in potential_neigh:
if tuple(neigh) not in exposed_indices_set and \
neigh[2] != kk[-1]:
i_n,j_n,k_n = neigh[0], neigh[1], neigh[2]
neigh_indices.add(tuple(neigh))
states[i_n,j_n,k_n] = 1
# determine phi value to assign
nidx = utils.list_neighbor_indices(neigh)
min_phi = np.inf
for idx in nidx:
i_en,j_en,k_en = idx[0], idx[1], idx[2]
if tuple(idx) in exposed_indices_set:
if phis[i_en,j_en,k_en] < min_phi:
min_phi = phis[i_en,j_en,k_en]
dummy[i_n,j_n,k_n] = min_phi + cell_size
phis = dummy
neigh_indices = list(neigh_indices)
# determine neighbor signed distance
dummy = phis
for ind_i,index in enumerate(neigh_indices):
if ind_i % int(len(neigh_indices)/10) == 0:
print('assigning neighbor signed distances, %i of %i' %
(ind_i+1,len(neigh_indices)))
i,j,k = index[0], index[1], index[2]
# input mask paths if the neighbor cell is on the surface
if k == kk[-2]:
mp = concat_mask_verts
else:
mp = None
distance = utils.min_dist_to_etch_front(index, exposed_indices, coords,
mp=mp)
dummy[i,j,k] = distance
phis = dummy
# #### check all neighbor phi to see if any should be converted to exposed
# neigh_indices_set = set((i[0],i[1],i[2]) for i in neigh_indices)
# for index in neigh_indices:
# i,j,k = index[0], index[1], index[2]
# if phis[i,j,k] < cell_size/2:
# states[i,j,k] = 0
# exposed_indices.append(index)
# neigh_indices_set.remove(index)
# known_in_mask_indices[tuple([i,j])] = 1/(cell_size/2) * phis[i,j,k]
# #### and refresh neighbors again
# dummy = phis
# for index in exposed_indices:
# i,j,k = index[0], index[1], index[2]
# potential_neigh = utils.list_neighbor_indices([i,j,k])
# for neigh in potential_neigh:
# if tuple(neigh) not in exposed_indices_set and \
# neigh[2] != kk[-1]:
# i_n,j_n,k_n = neigh[0], neigh[1], neigh[2]
# neigh_indices_set.add(tuple(neigh))
# states[i_n,j_n,k_n] = 1
# # determine phi value to assign
# nidx = utils.list_neighbor_indices(neigh)
# min_phi = cell_size + cell_size/2
# flag = False
# for idx in nidx:
# i_en,j_en,k_en = idx[0], idx[1], idx[2]
# if tuple(idx) in exposed_indices_set:
# if phis[i_en,j_en,k_en] < min_phi:
# min_phi = phis[i_en,j_en,k_en]
# flag = True
# if flag is True:
# dummy[i_n,j_n,k_n] = min_phi + cell_size
# else:
# dummy[i_n,j_n,k_n] = min_phi
# phis = dummy
# neigh_indices = list(neigh_indices_set)
# %% loop over steps
step_index_lookup = {i:key for i,key in enumerate(etch_grid)}
print('')
# loop over etch_grid keys (after init) which represent each detailed step
loop_steps = [key for key in list(etch_grid.keys()) if 'init' not in key]
curr_process = 'init'
d = cell_size
diag_dist = np.sqrt(2*cell_size**2)
run_accounting = False
amounts = []
etch_comp_time = []
cell_accounting_time = []
n_cells_span = 2
start_time = time.time()
save_states = {step: np.zeros_like(states) for i,step in enumerate(KOI)}
save_phis = {step: np.zeros_like(phis) for i,step in enumerate(KOI)}
for step_i, step in enumerate(loop_steps,start=1):
#### plot every X steps
if step_i % 2 == 0:#(int(len(loop_steps)/20)) == 0:
# print('\tmaking plot for step %s' % step)
path = plot_state_dir + step + '.png'
utils.plot_cell_list(exposed_indices, coords,
phis=phis,step=step,save_to_file=path,
cell_size=cell_size)
path = plot_z_dir + step + '.png'
utils.plot_cell_list(exposed_indices, coords,
phis=None,step=step,save_to_file=path,
cell_size=cell_size)
#### define current process
master_step = step.split('_')[0]
prev_process = curr_process
if 'bosch-iso' in step:
if 'isotime0' in step:
curr_process = 'bosch-iso: bosch'
else:
curr_process = 'bosch-iso: iso'
else:
if 'bosch' in step.split('_')[1]:
curr_process = 'bosch'
elif 'iso' in step.split('_')[1]:
curr_process = 'iso'
if curr_process != prev_process:
print('current process: %s'
%(curr_process))
etch_start_time = time.time()
update_phis = np.zeros_like(phis,dtype=np.float32)
#### bosch steps
if (curr_process == 'bosch-iso: bosch' or curr_process == 'bosch'):
# bosch step is a vertical etch of exposed_cells in the x, y bounds
# of the mask ('in_mask' == True)
n_bosch_steps = recipe_steps[master_step]['bosch']
if curr_process == 'bosch-iso: bosch':
curr_bosch_step = int(step.split('_')[-2].split('bosch')[-1])
else:
curr_bosch_step = int(step.split('_')[-1].split('bosch')[-1])
print('\tbosch step %i of %i (step %i of %i)' % \
(curr_bosch_step, n_bosch_steps, step_i,n_steps))
exp_pts = np.array([0,0,0])#make_cloud([exposed_cells])[0]
for index in exposed_indices:
i, j, k = index[0], index[1], index[2]
if tuple([i,j]) in known_in_mask_indices:
z = coords[2][i,j,k]
etch_amount = bosch_vert_step(z) * \
known_in_mask_indices[tuple([i,j])]
update_phis[i,j,k] = etch_amount
#### iso steps
elif (curr_process == 'bosch-iso: iso' or curr_process == 'iso'):
n_iso_steps = recipe_steps[master_step]['iso']
curr_iso_step = int(step.split('_')[-1].split('isotime')[-1])
print('\tiso time %i of %i seconds (step %i of %i)' % \
(curr_iso_step, n_iso_steps, step_i, n_steps))
exp_pts = np.array([x_mid,y_mid,0])#make_cloud([exposed_cells])[0]
angles = []
x_center, y_center, z_center = [],[],[]
dN = 0.01
ea = 0
for index in exposed_indices:
i, j, k = index[0], index[1], index[2]
phi_i_j_k = phis[i,j,k]
normal = norms[i,j,k]
# sweep the cell centers and get phis if available
# e.g., ii for i+1 and 0 for i-1
x, y, z = coords[0][i,j,k], coords[1][i,j,k], coords[2][i,j,k]
i_forward_diff = (phis[i+1,j,k] - phi_i_j_k)/cell_size
i_backward_diff = (phi_i_j_k - phis[i-1,j,k])/cell_size
j_forward_diff = (phis[i,j+1,k] - phi_i_j_k)/cell_size
j_backward_diff = (phi_i_j_k - phis[i,j-1,k])/cell_size
k_forward_diff = (phis[i,j,k+1] - phi_i_j_k)/cell_size
k_backward_diff = (phi_i_j_k - phis[i,j,k-1])/cell_size
angle = utils.compute_angle(normal,ref_pt=exp_pts)
curr_vert_rate = vert_rate(z)
curr_horiz_rate = horiz_rate(z)
# etch_rate
etch_rate = np.sqrt((curr_vert_rate*np.cos(angle))**2 + \
(curr_horiz_rate*np.sin(angle))**2)
beta_x_pos = 0.5*(i_forward_diff + i_backward_diff)
beta_y_pos = 0.5*(j_forward_diff + j_backward_diff)
beta_z_pos = 0.5*(k_forward_diff + k_backward_diff)
grad_mag = np.sqrt(beta_x_pos**2 + beta_y_pos**2 + beta_z_pos**2)
beta_x_neg = 0.5*(i_forward_diff - i_backward_diff)
beta_y_neg = 0.5*(j_forward_diff - j_backward_diff)
beta_z_neg = 0.5*(k_forward_diff - k_backward_diff)
alpha_l = abs(np.array([curr_horiz_rate*normal[0],
curr_horiz_rate*normal[1],
curr_vert_rate*normal[2]]))
etch_amount = C_etch*t_step*(etch_rate*grad_mag - \
alpha_f*(alpha_l[0]*beta_x_neg + alpha_l[1]*beta_y_neg + \
alpha_l[2]*beta_z_neg))
ea += etch_amount/len(exposed_indices)
update_phis[i,j,k] = etch_amount
# remove etch amount for either active process
phis -= update_phis
dummy_phis = phis + 0.5*cell_size
if dummy_phis.min() < 0:
run_accounting = True
start_accounting_time = time.time()
# temp lists for exposed, removed, and neighbor cells
temp_exposed = []
temp_removed = []
temp_neigh = []
if run_accounting == True:
run_accounting = False
#### checking exposed cells to move to temporary containers
dummy_exposed = []
for index in exposed_indices:
i, j, k = index[0], index[1], index[2]
if (phis[i,j,k] < -0.5*cell_size):
temp_removed.append(index)
elif (phis[i,j,k] > 0.5*cell_size):
temp_neigh.append(index)
else:
dummy_exposed.append(index)
#### adjust phi values for neighbor cells
dummy_neigh = []
for index in neigh_indices:
i,j,k = index[0], index[1], index[2]
nidx = utils.list_neighbor_indices(index)
min_idx, min_phi = None, np.inf
for idx in nidx:
i_n,j_n,k_n = idx[0], idx[1], idx[2]
if tuple(idx) in exposed_indices_set:
if phis[i_n,j_n,k_n] < min_phi:
min_phi = phis[i_n,j_n,k_n]
min_idx = idx
if min_idx is None:
pass
else:
phis[i,j,k] = min_phi + cell_size
if abs(phis[i,j,k]) <= 0.5*cell_size:
temp_exposed.append(index)
else:
dummy_neigh.append(index)
#### adjust phi values for removed cells
dummy_rm = []
for index in rm_indices:
i,j,k = index[0], index[1], index[2]
nidx = utils.list_neighbor_indices(index)
max_idx, max_phi = None, -np.inf
for idx in nidx:
i_n,j_n,k_n = idx[0], idx[1], idx[2]
if tuple(idx) in exposed_indices_set:
if phis[i_n,j_n,k_n] > max_phi:
max_phi = phis[i_n,j_n,k_n]
max_idx = idx
if max_idx is None:
pass
else:
phis[i,j,k] = max_phi - cell_size
if abs(phis[i,j,k]) <= 0.5*cell_size:
temp_exposed.append(index)
else:
dummy_rm.append(index)
# refresh exposed indices list and set for quick searching
exposed_indices = dummy_exposed
exposed_indices_set = set((i[0],i[1],i[2]) for i in exposed_indices)
# refresh neighbor indices list and set for quick searching
neigh_indices = dummy_neigh
neigh_indices_set = set((i[0],i[1],i[2]) for i in neigh_indices)
print('\t\t%i neighbor cells' % len(neigh_indices))
# refresh removed indices list
rm_indices = dummy_rm
rm_indices_set = set((i[0],i[1],i[2]) for i in rm_indices)
print('\t\t%i removed cells' % len(rm_indices))
#### convert temp lists to main lists and refresh sets
# neighs
for index in temp_neigh:
if tuple(index) not in neigh_indices_set:
i,j,k = index[0], index[1], index[2]
neigh_indices.append(index)
states[i,j,k] = 1
neigh_indices_set = set((i[0],i[1],i[2]) for i in neigh_indices)
# removed
for index in temp_removed:
if tuple(index) not in rm_indices_set:
i,j,k = index[0], index[1], index[2]
rm_indices.append(index)
states[i,j,k] = -1
rm_indices_set = set((i[0],i[1],i[2]) for i in rm_indices)
# exposed
for index in temp_exposed:
if tuple(index) not in exposed_indices_set:
i,j,k = index[0], index[1], index[2]
exposed_indices.append(index)
states[i,j,k] = 0
exposed_indices_set = set((i[0],i[1],i[2]) for i in exposed_indices)
print('\t\t%i exposed cells' % len(exposed_indices))
# assign states exposed cell neighbors and refresh normals
for index in exposed_indices:
i,j,k = index[0], index[1], index[2]
nidx = utils.list_neighbor_indices(index)
for idx in nidx:
i_n,j_n,k_n = idx[0], idx[1], idx[2]
if states[i_n,j_n,k_n] == 2 and k_n < kk[-1]:
states[i_n,j_n,k_n] = 1
phis[i_n,j_n,k_n] = phis[i,j,k] + cell_size
if tuple(idx) not in neigh_indices_set:
neigh_indices.append(idx)
if states[i_n,j_n,k_n] == -2:
states[i_n,j_n,k_n] = -1
phis[i_n,j_n,k_n] = phis[i,j,k] - cell_size
if tuple(idx) not in rm_indices_set:
rm_indices.append(idx)
#### update normals
if step_i%50001 == 0:
print('\t\t\tupdating all normals')
norms = utils.compute_normals(states,coords,norms,
exposed_indices,
cell_size=cell_size)
else:
norms = utils.compute_normals(states, coords, norms, temp_exposed,
cell_size)
#### smooth signed distances (phi)
if step_i%50 == 0:
print('\t\t\tsmoothing phi')
smooth_start = time.time()
w = 0.5
dummy = phis
for index in exposed_indices:
w_avg = 0
i,j,k = index[0],index[1],index[2]
dist,idx = utils.get_exposed_neighbors(index, states, coords,
n_cells_span=1)
# dist,idx = utils.get_neighbors(index, states, coords,
# n_cells_span=1)
n_neigh = len(idx)
for i_d,neigh_index in enumerate(idx) :
i_n,j_n,k_n = neigh_index[0], neigh_index[1], neigh_index[2]
w_avg += (1-w)/n_neigh * phis[i_n,j_n,k_n]
# w_avg += phis[i_n,j_n,k_n]
dummy[i,j,k] = w_avg+w*phis[i,j,k] #(w_avg + phis[i,j,k])/(n_neigh+1)
# dummy[i,j,k] = (w_avg + phis[i,j,k])/(n_neigh+1)
phis = dummy
# elif step_i%50 == 0:
# print('\t\t\tsmoothing phi')
# smooth_start = time.time()
# w = 0.7
# dummy = phis
# for index in exposed_indices:
# w_avg = 0
# i,j,k = index[0],index[1],index[2]
# # dist,idx = utils.get_exposed_neighbors(index, states, coords,
# # n_cells_span=1)
# dist,idx = utils.get_neighbors(index, states, coords,
# n_cells_span=1)
# n_neigh = len(idx)
# for i_d,neigh_index in enumerate(idx) :
# i_n,j_n,k_n = neigh_index[0], neigh_index[1], neigh_index[2]
# w_avg += (1-w)/n_neigh * phis[i_n,j_n,k_n]
# # w_avg += phis[i_n,j_n,k_n]
# dummy[i,j,k] = w_avg+w*phis[i,j,k] #(w_avg + phis[i,j,k])/(n_neigh+1)
# # dummy[i,j,k] = (w_avg + phis[i,j,k])/(n_neigh+1)
# phis = dummy
# w = 0.5
# phi_p_i = np.roll(phis, 1, axis=0)
# phi_m_i = np.roll(phis, -1, axis=0)
# phi_p_j = np.roll(phis, 1, axis=1)
# phi_m_j = np.roll(phis, -1, axis=1)
# phi_p_k = np.roll(phis, 1, axis=2)
# phi_m_k = np.roll(phis, -1, axis=2)
# phis = w * phis + (w-1)/6*(phi_p_i + phi_m_i + phi_p_j + \
# phi_m_j + phi_p_k + phi_m_k)
# ndimage.convolve(phis,kern, mode='constant', cval=0.0)
# X, Y = coords[0][:,:,0], coords[1][:,:,0]
# Z = np.ones_like(X) * phis[-1,-1,-1]
# X_i, Y_i, Z_i = np.where(states == 0)
# for i,j,k in zip(X_i,Y_i,Z_i):
# if states[i,j,k] == 0:
# Z[i,j] = phis[i,j,k]
# zi = sg.convolve2d(Z, kernel, mode='same', boundary='fill',
# fillvalue=-10)
# for i,j,k in zip(X_i,Y_i,Z_i):
# if states[i,j,k] == 0:
# phis[i,j,k] = zi[i,j]
print('\t\t\t\tsmoothing time %.2f s' %
(time.time()-smooth_start))
accounting_time = time.time() - start_accounting_time
print('\t\t\taccounting time %.2f s \n' % (accounting_time))
#### save the etch profile
try:
save_states[step] = states.copy()
save_phis[step] = phis.copy()
except:
pass
print('-------- %.2f seconds ---------' % (time.time()-start_time))
# %% take slice of etch
for step in loop_steps:
s_diag, z_diag = utils.cross_section_slice(phis, states, coords,
cell_size, normal=[1,1,0],
offset=0)
s, z = utils.cross_section_slice(phis, states, coords,
cell_size, normal=[1,0,0],
offset=0)
plt.plot(s_diag, z_diag,'o')
plt.plot(s, z)
# %% dummy
from scipy.interpolate import griddata
import scipy.signal as sg
plt.close('all')
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
X, Y = coords[0][:,:,0], coords[1][:,:,0]
Z = np.ones_like(X) * -10
ii,jj = X.shape
kk = coords[0].shape[2]
for i in range(ii):
for j in range (jj):
for k in range(kk):
if states[i,j,k] == 0:
Z[i,j] = phis[i,j,k]
else:
pass
ax.plot_surface(X,Y,Z)
zi = griddata((X.ravel(), Y.ravel()), Z.ravel(),
(x_axis[None,:], y_axis[:,None]), method='nearest')
X, Y = np.meshgrid(x_axis,y_axis)
kernel_shape = (3,3)
kernel = np.full(kernel_shape, 1/np.prod(kernel_shape))
zi = sg.convolve2d(Z, kernel, mode='same', boundary='fill',
fillvalue=-10)
zi = np.reshape(zi,X.shape)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X,Y,zi)
fig = plt.figure()
plt.subplot(121)
plt.imshow(zi)
plt.subplot(122)
plt.imshow(Z)
# %% save files and plot final etch profile
pv.set_plot_theme("document")
written_keys = [key for key in save_phis.keys() if np.max(save_phis[key]) != 0]
plot_states = save_states['step01_bosch-iso03_bosch012_isotime24']
exposed_cells = utils.plot_pts(plot_states,coords,cell_size=cell_size,
wafer_thickness=525,
state='exposed',plot_grid=False)
# exposed_pts,exposed_states,_ = utils.make_cloud([exposed_cells])
#plot_point_cloud((exposed_pts,neigh_pts),scalar='z')
# with_data = [g for g in etch_grid if len(etch_grid[g]) != 0]
# dict_file = plot_z_dir + 'exposed_cells_maskX_R5_C3.txt'
# # save exposed_cell to file
# with open(dict_file, 'w') as file:
# file.write(json.dumps(exposed_cells))
# #save vtk file
for key in save_states.keys():
plot_states = save_states[key]
exposed_obj = pv.PolyData(utils.get_cell_coords(plot_states,coords,state = 'exposed'))
vtk_save_exp_obj = plot_z_dir +key+ 'exposed_obj.vtk'
exposed_obj.save(vtk_save_exp_obj)
#pcd_exp = o3d.geometry.PointCloud()
#pcd_neigh = o3d.geometry.PointCloud()
#pcd_exp.points = o3d.utility.Vector3dVector(exposed_pts)
#pcd_neigh.points = o3d.utility.Vector3dVector(neigh_pts)
#o3d.visualization.draw_geometries([pcd_exp,pcd_neigh])
# steps = []
# for step in list(etch_grid.keys()):
# if len(etch_grid[step]) != 0:
# steps.append(step)
# last_key = steps[-50]#list(etch_grid.keys())[-1]
# exp_pts = etch_grid[last_key][0]
# norms = utils.compute_normals(states,coords,norms,
# exposed_indices,
# cell_size=cell_size)
# exp_norms = []
# exp_pts = []
# for index in exposed_indices:
# i,j,k = index[0], index[1], index[2]
# exp_pts.append([coords[0][i,j,k], coords[1][i,j,k], coords[2][i,j,k]])
# exp_norms.append(norms[i,j,k])
# pcd_exp = o3d.geometry.PointCloud()
# pcd_exp.points = o3d.utility.Vector3dVector(exp_pts)
# for norm in exp_norms:
# pcd_exp.normals.append(-norm)
# o3d.visualization.draw_geometries([pcd_exp])
# # %% get metrics out of final profile
# # num_exp_n = []
# # num_n = []
# # angle = []
# # z = []
# # for cell in list(exposed_cells.keys()):
# # z.append(cell[2])
# # x = cell[0]
# # y = cell[1]
# # angle.append(np.arctan(y/x))
# # num_exp_n.append(len(exposed_cells[cell]['exp_neighbors']))
# # num_n.append(len(exposed_cells[cell]['neighbors']))
# # # print(exposed_cells[cell]['num_exp_neighs'] -
# # # len(exposed_cells[cell]['neighbors']))
# # plt.hist(num_exp_n)
# # from mpl_toolkits.mplot3d import Axes3D
# # import matplotlib.cm as cmx
# # import matplotlib as mpl
# # fig = plt.figure()
# # ax = Axes3D(fig)
# # cm = 'inferno'
# # cNorm = mpl.colors.Normalize(vmin=0, vmax=max(num_n))
# # scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm)
# # ax.scatter(angle,num_exp_n,z,alpha=1,c=scalarMap.to_rgba(num_n),
# # marker='o')
# # fig.colorbar(scalarMap)
# # ax.set_xlabel('angle')
# # ax.set_ylabel('num exp neighbors')
# # ax.set_zlabel('z')
# # # # suffle y pos and gap values carrying their indices with them
# # # temp = list(zip(i_y_pos,y_pos))
# # # temp_yp = sorted(temp_yp,key=lambda temp_yp:temp_yp[1], reverse=True)
# # # random.shuffle(temp_yp)
# # # i_y_pos,y_pos = zip(*temp_yp)
# # # i_y_pos = list(i_y_pos)
# # # y_pos = list(y_pos)
# # plt.figure()
# # plt.plot(num_n,num_exp_n,'o')
# # plt.xlabel('num exposed neighbors')
# # plt.ylabel('total num neighbors')