-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathetch_sim_utilities_v3.py
493 lines (413 loc) · 18 KB
/
etch_sim_utilities_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import numpy as np
import pyvista as pv
import matplotlib as mpl
from sklearn.neighbors import NearestNeighbors, KNeighborsRegressor
# helper function s for cellular automata silicon ethcing simulation
def define_steps(recipe_steps, t_start, t_step):
from collections import OrderedDict
total_iso_time = 0
etch_grid = OrderedDict()
etch_grid['init'] = []
print('constructing specific step keys for topo container')
for step in recipe_steps:
try:
total_iso_time += recipe_steps[step]['iso']
except:
pass
for i_cycle, cycles in enumerate(range(recipe_steps[step]['cycles'])):
# if it is a combined bosch-iso step
if len(str(i_cycle)) < 2:
if i_cycle == 9:
i_cycle_str = str(i_cycle+1)
else:
i_cycle_str = '0' + str(i_cycle+1)
if recipe_steps[step]['bosch'] != None and \
recipe_steps[step]['iso'] != None:
# construct detailed keys for data container
# i.e. key step1_bosch-iso6_bosch12_isotime100 is data for
# the 100th second if an iso etch following the 12th bosch step
# in the 6th cycle of a bosch-iso combined 1st step of the recipe
# combined bosch-iso etching starts with a bosch step; the key
# for this first step can be identified by an "_isotime0" flag
for i_bosch in range(recipe_steps[step]['bosch']):
if len(str(i_bosch)) < 3:
if len(str(i_bosch)) == 1:
if i_bosch == 9:
i_bosch_str = '0' + str(i_bosch+1)
else:
i_bosch_str = '00' + str(i_bosch+1)
elif len(str(i_bosch)) == 2:
if i_bosch == 99:
i_bosch_str = str(i_bosch+1)
else:
i_bosch_str = '0' + str(i_bosch+1)
# initial bosch cycle key
key = step + '_bosch-iso' + i_cycle_str + \
'_bosch' + i_bosch_str + '_isotime0'
etch_grid[key] = []
for i_t,t in enumerate(range(t_start,
recipe_steps[step]['iso'],
t_step)):
key = step + '_bosch-iso' + i_cycle_str + \
'_bosch' + i_bosch_str + '_isotime' + str(t+t_step)
etch_grid[key] = []
elif recipe_steps[step]['bosch'] != None and \
recipe_steps[step]['iso'] == None:
# similar key construction but specifically for bosch etching; it
# assumed that each cycle of bosch etching has the same etching
# rate
for i_bosch in range(recipe_steps[step]['bosch']):
if len(str(i_bosch)) < 3:
if len(str(i_bosch)) == 1:
if i_bosch == 9:
i_bosch_str = '0' + str(i_bosch+1)
else:
i_bosch_str = '00' + str(i_bosch+1)
elif len(str(i_bosch)) == 2:
if i_bosch == 99:
i_bosch_str = str(i_bosch+1)
else:
i_bosch_str = '0' + str(i_bosch+1)
else:
i_bosch_str = str(i_bosch+1)
key = step + '_bosch' + i_bosch_str
etch_grid[key] = []
elif recipe_steps[step]['bosch'] == None and \
recipe_steps[step]['iso'] != None:
# similar key construction but specifically for iso etching; it is
# possible to have multiple cycles of iso etching, i.e. each with
# different conditions/rates
for i_t,t in enumerate(range(t_start,
recipe_steps[step]['iso'],
t_step)):
key = step + '_iso' + i_cycle_str + '_isotime' + \
str(t+t_step)
etch_grid[key] = []
return etch_grid, total_iso_time
def ion_source_dist(theta, sigma=1):
J = 1/(sigma*np.sqrt(2*np.pi))*np.exp(-(theta-np.pi/2)**2/(2*sigma**2))
return J
def etch_rate():
k_b = 1.38e-23 # Boltzman constant [J/K]
T_s = 100 + 274.15 # substrate temperature [K]
k_0 = np.linspace(0,30,30)
F_r = 150 # flow rate of SF6 [sccm]
return
#def cross_section_slice(cells,p1=(-200,200),p2=(200,-200)):
# if type(cells) == dict:
# cells = np.array(list(cells.keys()))
def cross_section_slice(phis, states, coords, cell_size, normal, offset=0):
p1 = [coords[0][0,0,0], coords[1][0,0,0]]
p2 = [coords[0][-1,-1,0], coords[1][-1,-1,0]]
x_slice = np.arange(p1[1],p2[1],cell_size)
m = normal[1]/normal[0]
if offset == 0: offset = (p2[1] - p2[0])/2
y_slice = m*(x_slice-p1[0]) + p1[1] + offset
x_axis = np.reshape(coords[0][0,:,0],(-1,1))
y_axis = np.reshape(coords[1][:,0,0],(-1,1))
kk = states.shape[2]
z = []
x_out = []
pt0 = np.array([x_slice[0], y_slice[0]])
for x,y in zip(x_slice,y_slice):
i_x = np.argmin((np.abs(x_axis - x)))
i_y = np.argmin((np.abs(y_axis - y)))
i_z = None
for k in range(kk):
if states[i_x,i_y,k] == 0:
i_z = k
if i_z == None: i_z = kk-2
z.append(coords[2][i_x,i_y,i_z])
pt = np.array([x,y])
x_out.append(np.sqrt(np.sum((pt-pt0)**2)))
return(x_out,z)
def list_neighbor_indices(index):
i,j,k = index[0], index[1], index[2]
return [[i-1,j,k], [i+1,j,k], [i,j-1,k], [i,j+1,k], [i,j,k-1], [i,j,k+1]]
def min_dist_to_etch_front(index, exposed_indices, coords, mp):
dist_path = np.inf
i,j,k = index[0], index[1], index[2]
coord = np.array([coords[0][i,j,k], coords[1][i,j,k],
coords[2][i,j,k]]).reshape((-1,3))
front_x = np.array([coords[0][ind[0],ind[1],ind[2]]
for ind in exposed_indices])
front_y = np.array([coords[1][ind[0],ind[1],ind[2]]
for ind in exposed_indices])
front_z = np.array([coords[2][ind[0],ind[1],ind[2]]
for ind in exposed_indices])
etch_coords = np.hstack((front_x.reshape((-1,1)),
front_y.reshape((-1,1)),
front_z.reshape((-1,1))))
dist = (np.sqrt(np.sum((etch_coords - coord)**2, axis=1))).min()
if mp is not None:
dist_path = (np.sqrt(np.sum((mp - coord)**2,
axis=1))).min()
if dist < dist_path:
return dist
else:
return dist_path
def is_in_mask(x,y,mask_paths,radius=0.0,alt_label=False):
# True for x, y pt coord in mask contour
# False for x, y pt coord not in mask contour
# SurfBound for pt on wafer surface as the boundary of an etch
try:
# one point, multiple mask paths
for path in mask_paths:
if alt_label != False:
inside = alt_label
break
elif alt_label == False:
inside = mask_paths[path].contains_point((x,y),radius=radius)
if inside == True: break
except:
# multiple points, one mask path
if type(x) is np.ndarray:
if alt_label == False:
inside = [mask_paths.contains_point((i,j),radius=radius) \
for i,j in zip(x,y)]
elif alt_label != True:
inside = [alt_label for i,j in zip(x,y)]
else:
if alt_label == False:
inside = mask_paths.contains_point((x,y),radius=radius)
elif alt_label != False:
inside = alt_label
return inside
def get_exposed_neighbors(index, states, coords, n_cells_span=1):
i,j,k = index[0], index[1], index[2]
i_span = np.linspace(i-n_cells_span,
i+n_cells_span,
2*n_cells_span+1,dtype=np.int)
j_span = np.linspace(j-n_cells_span,
j+n_cells_span,
2*n_cells_span+1,dtype=np.int)
if k + n_cells_span >= states.shape[2]:
n_cells_span = states.shape[2]-k-1
k_span = np.linspace(k-n_cells_span,
k+n_cells_span,
2*n_cells_span+1,dtype=np.int)
idx = []
dist = []
x,y,z = coords[0][i,j,k],coords[1][i,j,k],coords[2][i,j,k]
for i_s in i_span:
for j_s in j_span:
for k_s in k_span:
if states[i_s,j_s,k_s] == 0:
x_n,y_n,z_n = coords[0][i_s,j_s,k_s], \
coords[1][i_s,j_s,k_s],coords[2][i_s,j_s,k_s]
idx.append([i_s,j_s,k_s])
d = np.sqrt(((x_n-x)**2 + (y_n-y)**2 + (z_n-z)**2))
dist.append(d)
return dist,idx
def get_neighbors(index, states, coords, n_cells_span=1):
i,j,k = index[0], index[1], index[2]
i_span = np.linspace(i-n_cells_span,
i+n_cells_span,
2*n_cells_span+1,dtype=np.int)
j_span = np.linspace(j-n_cells_span,
j+n_cells_span,
2*n_cells_span+1,dtype=np.int)
if k + n_cells_span >= states.shape[2]:
n_cells_span = states.shape[2]-k-1
k_span = np.linspace(k-n_cells_span,
k+n_cells_span,
2*n_cells_span+1,dtype=np.int)
idx = []
dist = []
x,y,z = coords[0][i,j,k],coords[1][i,j,k],coords[2][i,j,k]
for i_s in i_span:
for j_s in j_span:
for k_s in k_span:
x_n,y_n,z_n = coords[0][i_s,j_s,k_s], \
coords[1][i_s,j_s,k_s],coords[2][i_s,j_s,k_s]
idx.append([i_s,j_s,k_s])
d = np.sqrt(((x_n-x)**2 + (y_n-y)**2 + (z_n-z)**2))
dist.append(d)
return dist,idx
def compute_normals(states, coords, norms,
etched_i_list, cell_size):
import time
# import itertools
start_time = time.time()
diag = cell_size * np.sqrt(3/4)
n_cells_span = 3
# radius = 7 * cell_size/2 + cell_size * 0.105 # 7 half-sizes plus margin away
radius = (2*n_cells_span) * diag # 6 diags plus margin away
# radius = (cell_size/2) * np.sqrt(24) + (cell_size/2)*0.102
n_normals = 0
for index in etched_i_list:
i,j,k = index[0], index[1], index[2]
x,y,z = coords[0][i,j,k], coords[1][i,j,k], coords[2][i,j,k]
n_normals += 1
i_span = np.linspace(i-n_cells_span,
i+n_cells_span,
2*n_cells_span+1,dtype=np.int)
j_span = np.linspace(j-n_cells_span,
j+n_cells_span,
2*n_cells_span+1,dtype=np.int)
if k + n_cells_span >= states.shape[2]:
n_cells_span = states.shape[2]-k-1
k_span = np.linspace(k-n_cells_span,
k+n_cells_span,
2*n_cells_span+1,dtype=np.int)
normal_vect = np.array([0,0,0])
for i_s in i_span:
for j_s in j_span:
for k_s in k_span:
if states[i_s,j_s,k_s] < 0:
x_v = coords[0][i_s,j_s,k_s]
y_v = coords[1][i_s,j_s,k_s]
z_v = coords[2][i_s,j_s,k_s]
d = np.sqrt((x-x_v)**2 + (y-y_v)**2 + (z-z_v)**2)
if d < radius:
curr_vect = np.array([x_v - x,
y_v - y,
z_v - z])
mag = np.linalg.norm(curr_vect)
if mag != 0:
curr_unit_vect = curr_vect/mag
else:
curr_unit_vect = np.array([0,0,0])
normal_vect = np.add(normal_vect,
curr_unit_vect)
if np.linalg.norm(normal_vect) == 0:
# if this happens, it is a point in space with a spehere of
# neighbors making the normal_vect magnitude 0 so just assign a
# dummy normal
norm = np.array([0,0,1])
else:
norm = (normal_vect / np.linalg.norm(normal_vect))
norms[i,j,k] = norm
t = time.time() - start_time
print('\t\t\t\t%.2f s to assign normals to %i cells' % (t,n_normals))
return norms
def compute_angle(norm,ref_pt=[0,0,0],wafer_thickness=525):
ref_vec = np.array([ref_pt[0] - ref_pt[0],
ref_pt[1] - ref_pt[1],
wafer_thickness + 10000 - ref_pt[2]])
ref_vec = np.array([0,0,1])# = ref_vec / np.linalg.norm(ref_vec)
angle1 = np.arccos(np.dot(ref_vec,norm))
angle2 = np.arccos(np.dot(ref_vec,-1*norm))
if angle2 > angle1:
angle = angle1
else:
angle = angle2
return angle
def plot_cell_list(cell_list,coords,phis=None,
step=None,wafer_thickness=525,
save_to_file=False,cell_size=None):
from pyvistaqt import BackgroundPlotter
import pyvista as pv
pts = []
scalars = []
for index in cell_list:
i,j,k = index[0], index[1], index[2]
pts.append([coords[0][i,j,k],
coords[1][i,j,k],
coords[2][i,j,k]])
if phis is None:
scalars.append(coords[2][i,j,k])
else:
scalars.append(phis[i,j,k])
obj = pv.PolyData(pts)
if save_to_file == False:
plotter = BackgroundPlotter()
else:
plotter = pv.Plotter(off_screen=True)
plotter.isometric_view()
if phis is None:
title = 'z height'
clim = [min(obj.points[:,2]), wafer_thickness]
else:
title = 'signed distance'
clim = [-cell_size/2, cell_size/2]
plotter.isometric_view()
plotter.add_mesh(obj, show_edges=True,
scalars=scalars,
point_size=5,
render_points_as_spheres=True,
cmap='Spectral',
clim=clim)
plotter.add_scalar_bar(title=title, height=0.08,width=0.4,
position_x=0.01,position_y=0.01)
if step != None:
plotter.add_text(step)
if save_to_file != False:
file_name = save_to_file
plotter.screenshot(file_name,transparent_background=True)
plotter.close()
def plot_pts(plot_states,coords,cell_size,state,wafer_thickness=525,
plot_grid=False):
from pyvistaqt import BackgroundPlotter
import pyvista as pv
pts = get_cell_coords(plot_states,coords,state=state)
if plot_grid is True:
obj = make_grid(pts,cell_size)
else:
obj = pv.PolyData(pts)
plotter = BackgroundPlotter()
plotter.isometric_view()
title = 'z height'
clim = [min(obj.points[:,2]), wafer_thickness]
if plot_grid is True:
plotter.add_mesh(obj, show_edges=False,
scalars=obj.points[:,2],
point_size=cell_size,
render_points_as_spheres=True,
cmap='Spectral',
clim=clim)
else:
plotter.add_mesh(obj, show_edges=True,
scalars=obj.points[:,2],
point_size=cell_size,
render_points_as_spheres=True,
cmap='Spectral',
clim=clim)
plotter.add_scalar_bar(title=title, height=0.08,width=0.4,
position_x=0.01,position_y=0.01)
def get_cell_coords(plot_states,coords,state):
pts = []
scalars = []
if state == 'exposed':
ii,jj,kk = np.where(plot_states==0)
elif state == 'neighbors':
ii,jj,kk = np.where(plot_states==1)
for i,j,k in zip(ii,jj,kk):
pts.append([coords[0][i,j,k],
coords[1][i,j,k],
coords[2][i,j,k]])
return pts
def make_grid(cell_coords,cell_size):
# helper function to make an unstructured grid from cell center points
cells = []
offset = np.arange(0,9*len(cell_coords),9)
cell_type = np.array([pv.vtk.VTK_HEXAHEDRON]*len(cell_coords))
point_count = 0
pts = np.array([])
n_pts = len(cell_coords)
for i_cell, cell_center in enumerate(cell_coords):
if i_cell%1000 == 0: print('building cell %i of %i' %(i_cell,n_pts))
cells.append(8)
for p in range(8):
cells.append(point_count)
point_count += 1
x = cell_center[0]
y = cell_center[1]
z = cell_center[2]
d = cell_size/2
# note this order
cell_pts = np.array([[x-d,y-d,z-d],[x+d,y-d,z-d],
[x+d,y+d,z-d],[x-d,y+d,z-d],
[x-d,y-d,z+d],[x+d,y-d,z+d],
[x+d,y+d,z+d],[x-d,y+d,z+d]])
cell_pts = np.around(cell_pts,3)
if pts.size == 0:
pts = cell_pts
else:
pts = np.vstack((pts,cell_pts))
# make unstructured grid
grid = pv.UnstructuredGrid(offset,
np.array(cells),
cell_type,
pts)
return grid