-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprocess_data.py
53 lines (39 loc) · 2.14 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from config import *
from utils.visualizers import Visualizer
from utils.helpers import create_img, evaluate_model, customize_dict_keys, normalize_to_flat, revise_report_df
from utils.upsample import upsample
from utils.load_data import load_data
import sys
import pandas as pd
from pandas.io.json import json_normalize
import numpy as np
from itertools import combinations
import random
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
from sklearn.utils import resample
def main():
if len(sys.argv) == 2:
input_data = INPUT_DATA_FILEPATH + sys.argv[1]
else:
print('Please provide the filename of the data file in the Data/Input directory'\
'containing the target and feature variables.')
for upsampled in [False, True]:
# load data- refer to load_data.py script for train test split and how to structure input dataframe
labels, features, target, X_train, X_test, y_train, y_test = load_data(input_data, upsampled=upsampled)
# iterate through models and visualizers to create and save yellowbrick visualizers to img directory
img_results = [create_img(X_train, X_test, y_train, y_test, labels, model, visualizer, upsampled, IMG_OUTPUT_FILEPATH) for visualizer in VISUALIZERS for model in MODELS]
# saves string value of model name as key and sklearn classification_report output_dict as value
report_dict = {str(model).split('(')[0]: evaluate_model(model, X_train, y_train, X_test, y_test) for model in MODELS}
# create pandas dataframe of report_dict and transpose
report_df = pd.DataFrame.from_dict(report_dict).T
# format report_df dataframe for use in app.py Dash Plotly heatmap
revised_report_df = revise_report_df(report_df)
if upsampled ==True:
revised_report_df.to_csv(OUTPUT_DATA_FILEPATH + 'report_df_upsampled.csv')
else:
revised_report_df.to_csv(OUTPUT_DATA_FILEPATH + 'report_df.csv')
if __name__ == '__main__':
main()