Skip to content

Commit 0deb465

Browse files
committed
edit hf theory
1 parent cc11a18 commit 0deb465

File tree

5 files changed

+135
-1
lines changed

5 files changed

+135
-1
lines changed

source/theory/pbc.rst

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2,3 +2,12 @@
22
****************************
33
Periodic boundary conditions
44
****************************
5+
6+
7+
8+
.. toctree::
9+
:maxdepth: 1
10+
11+
pbc/gto.rst
12+
pbc/df.rst
13+
pbc/pp.rst

source/theory/pbc/df.rst

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
.. _theory_pbc_df:
2+
3+
Density fitting
4+
***************

source/theory/pbc/gto.rst

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
.. _theory_pbc_gto:
2+
3+
Crystalline Gaussian-type atomic orbitals
4+
*****************************************

source/theory/pbc/pp.rst

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,4 @@
1+
.. _theory_pbc_pp:
2+
3+
Pseudopotentials
4+
****************

source/theory/scf.rst

Lines changed: 114 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -89,7 +89,7 @@ Within the AO representation, the Hartree-Fock equations reduce to the Roothaan-
8989

9090
.. math::
9191
92-
\mathbf{F}^{\alpha} \mathbf{C}^{\alpha} = \bf{\varepsilon}^{\alpha} \mathbf{S} \mathbf{C}^{\alpha} \;,
92+
\mathbf{F}^{\alpha} \mathbf{C}^{\alpha} = \boldsymbol{\varepsilon}^{\alpha} \mathbf{S} \mathbf{C}^{\alpha} \;,
9393
9494
where
9595

@@ -112,6 +112,119 @@ For example, the ground-state electronic energy is expressed as
112112
113113
Periodic boundary conditions
114114
----------------------------
115+
PySCF also alows the user to perform SCF calculations for solids.
116+
With crystalline Gaussian-type AOs as the underlying single-partial basis (see :numref:`theory_pbc_gto`),
117+
the molecular SCF code can be easily adapted to the cases where periodic boundary conditions (PBCs)
118+
are applied. Instead of solving only one set of Roothaan-Hall or Pople-Nesbet equtions for molecules,
119+
it is now necessary to solve them for each k point for solids:
120+
121+
.. math::
122+
123+
\mathbf{F}(\mathbf{k}) \mathbf{C}(\mathbf{k}) = \boldsymbol{\varepsilon}(\mathbf{k}) \mathbf{S}(\mathbf{k}) \mathbf{C}(\mathbf{k}) \;,
124+
125+
where the Fock matrix is defined (within the restricted formalism) as
126+
127+
.. math::
128+
129+
\mathbf{F}(\mathbf{k}) = \mathbf{T}(\mathbf{k}) + \mathbf{V}^{\rm PP}(\mathbf{k})
130+
+\mathbf{J}(\mathbf{k}) - \frac{1}{2} \mathbf{K}(\mathbf{k}) + \mathbf{V}^{L+J}(\mathbf{k}) \;.
131+
132+
Here, :math:`\mathbf{V}^{\rm PP}` denotes the pseudopotential contribution and
133+
:math:`\mathbf{V}^{L+J}` deals with the divergence of local pseudopotential and Hartree potential (see below).
134+
135+
The one-electron overlap, kinetic energy, and local pseudopotential integrals
136+
are evaluated through numerical integrations on the real-space grid according to
137+
138+
.. math::
139+
140+
S_{\mu\nu}(\mathbf{k}) = \int_\Omega d\mathbf{r} \phi_{\mu\mathbf{k}}^{*}(\mathbf{r}) \phi_{\nu\mathbf{k}}(\mathbf{r}) \;,
141+
142+
.. math::
143+
144+
T_{\mu\nu}(\mathbf{k}) = -\frac{1}{2} \int_\Omega d\mathbf{r} \phi_{\mu\mathbf{k}}^{*}(\mathbf{r})
145+
\boldsymbol{\nabla}_{\mathbf{r}}^2 \phi_{\nu\mathbf{k}}(\mathbf{r}) \;,
146+
147+
and
148+
149+
.. math::
150+
151+
V_{\mu\nu}^{\rm L-PP}(\mathbf{k}) = \int_\Omega d\mathbf{r} \phi_{\mu\mathbf{k}}^{*}(\mathbf{r})
152+
v^{\rm L-PP}(\mathbf{r}) \phi_{\nu\mathbf{k}}(\mathbf{r}) \;,
153+
154+
where :math:`\Omega` labels the unit cell volume.
155+
The non-local part of the pseudopotential is computed in the reciprocal space:
156+
157+
.. math::
158+
159+
V_{\mu\nu}^{\rm NL-PP}(\mathbf{k}) = \Omega \sum_{\mathbf{G},\mathbf{G}'} \phi_{\mu\mathbf{k}}^{*}(\mathbf{G})
160+
v^{\rm NL-PP}(\mathbf{k}+\mathbf{G}, \mathbf{k}+\mathbf{G}') \phi_{\nu\mathbf{k}}(\mathbf{G}') \;,
161+
162+
where
163+
164+
.. math::
165+
166+
v^{\rm NL-PP}(\mathbf{k}+\mathbf{G}, \mathbf{k}+\mathbf{G}') = \frac{1}{\Omega} \int d\mathbf{r} \int d\mathbf{r}'
167+
e^{-i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}} v^{\rm NL-PP}(\mathbf{r},\mathbf{r}')
168+
e^{ i(\mathbf{k}+\mathbf{G}^{'})\cdot\mathbf{r}'} \;.
169+
170+
.. note::
171+
The way that the pseudopotential integrals are computed differs in different density fitting schemes and for different
172+
pseudopotentials. Interested readers should refer to :numref:`theory_pbc_df` and :numref:`theory_pbc_pp`.
173+
174+
The Coulomb and exchange matrices are defined similarly as
175+
176+
.. math::
177+
178+
J_{\mu\nu}(\mathbf{k}) = \int_{\Omega} d\mathbf{r} \phi_{\mu\mathbf{k}}^{*}(\mathbf{r}) v_{\rm H}(\mathbf{r}) \phi_{\nu\mathbf{k}}(\mathbf{r}) \;,
179+
180+
and
181+
182+
.. math::
183+
184+
K_{\mu\nu}(\mathbf{k}) = \int_{\Omega} d\mathbf{r} \int d\mathbf{r}' \phi_{\mu\mathbf{k}}^{*}(\mathbf{r})
185+
\frac{\rho(\mathbf{r}, \mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} \phi_{\nu\mathbf{k}}(\mathbf{r}') \;.
186+
187+
Here :math:`v_{\rm H}` is the Hartree potential
188+
189+
.. math::
190+
191+
v_{\rm H}(\mathbf{r}) = \frac{4\pi}{\Omega} \sum_{\mathbf{G}\neq \mathbf{0}} \frac{\rho(\mathbf{G})}{G^2} e^{i\mathbf{G}\cdot\mathbf{r}} \;,
192+
193+
and :math:`\rho(\mathbf{r}, \mathbf{r}')` is the density matrix
194+
195+
.. math::
196+
197+
\rho(\mathbf{r}, \mathbf{r}') = \sum_{\mathbf{k}} w_{\mathbf{k}} \sum_{\lambda\sigma} P_{\lambda\sigma}(\mathbf{k})
198+
\phi_{\lambda\mathbf{k}}(\mathbf{r}) \phi_{\sigma\mathbf{k}}^{*}(\mathbf{r}') \;,
199+
200+
where :math:`w_{\mathbf{k}}` represents the weight of each k point.
201+
202+
Note that the local part of the pseudopotential and the Hartree potential diverge at :math:`G=0`;
203+
however, their sum is not, which leads to the :math:`V^{\rm L+J}` term (for charge neutral unit cell):
204+
205+
.. math::
206+
207+
V_{\mu\nu}^{\rm L+J} (\mathbf{k}) = \frac{S_{\mu\nu}}{\Omega}
208+
\int d\mathbf{r} \left(v^{\rm L-PP}(\mathbf{r}) + \sum_{\alpha} \frac{Z_{\alpha}e^2}{r} \right) \;.
209+
210+
.. note::
211+
212+
For details about how to compute the Coulomb (:math:`\mathbf{J}`)
213+
and exchange (:math:`\mathbf{K}`) integrals, see :numref:`theory_pbc_df`.
214+
215+
Finally, the total electronic energy differs from the molecular case only by a k-point summation:
216+
217+
.. math::
218+
219+
E_{\rm HF} = \sum_{\mathbf{k}} w_{\mathbf{k}} E_{\rm HF}(\mathbf{k}) \;,
220+
221+
where
222+
223+
.. math::
224+
225+
E_{\rm HF}(\mathbf{k}) = \frac{1}{2} \left\{ {\rm Tr}\left[\mathbf{h}(\mathbf{k}) (\mathbf{P}^{\alpha}(\mathbf{k})+\mathbf{P}^{\beta}(\mathbf{k}))\right]
226+
+ {\rm Tr}\left[\mathbf{F}^{\alpha}(\mathbf{k}) \mathbf{P}^{\alpha}(\mathbf{k})\right]
227+
+ {\rm Tr}\left[\mathbf{F}^{\beta}(\mathbf{k}) \mathbf{P}^{\beta}(\mathbf{k})\right] \right\} \;.
115228
116229
117230
Initial guess

0 commit comments

Comments
 (0)