-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualisation.py
184 lines (155 loc) · 8.21 KB
/
visualisation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import numpy as np
import os
class Visualisation(object):
def __init__(self, path, analyse_object, vecarraylist=None, veccolorlist=None, vecmat=None, veclenlist=None,
surfcoords=None, surfcolor=None, surfmat=None, planecoordlist=None,
planecolorlist=None, planemat=None):
self.vecarraylist = vecarraylist
self.veccolorlist = veccolorlist
self.vecmat = vecmat
self.veclenlist = veclenlist
self.surfcoords = surfcoords
self.surfcolor = surfcolor
self.surfmat = surfmat
self.planecoordlist = planecoordlist
self.planecolorlist = planecolorlist
self.planemat = planemat
self.path = path
self.handles = analyse_object.handles
@staticmethod
def __make_triangle_mesh_lines(x, y, z, moln):
lines = []
for x_index in range(len(x)-1):
for y_index in range(len(y)-1):
# only use the middle part of the surface
if x.shape[0] > 50 and not ((14 < x_index < (range(len(x)-1)[-1] - 15)) and (14 < y_index < (range(len(y)-1)[-1] - 15))):
continue
a = np.array([x[y_index, x_index], y[y_index, x_index], z[y_index, x_index]])
b = np.array([x[y_index+1, x_index], y[y_index+1, x_index], z[y_index+1, x_index]])
c = np.array([x[y_index+1, x_index+1], y[y_index+1, x_index+1], z[y_index+1, x_index+1]])
d = np.array([x[y_index, x_index+1], y[y_index, x_index+1], z[y_index, x_index+1]])
n_a = np.cross(d-a, b-a)
n_a = n_a/np.linalg.norm(n_a)
n_b = np.cross(a-b, c-b)
n_b = n_b/np.linalg.norm(n_b)
n_c = np.cross(b-c, d-c)
n_c = n_c/np.linalg.norm(n_c)
n_d = np.cross(c-d, a-d)
n_d = n_d/np.linalg.norm(n_d)
fdict1 = {"xa": str(a[0]), "ya": str(a[1]), "za": str(a[2]),
"xb": str(b[0]), "yb": str(b[1]), "zb": str(b[2]),
"xd": str(d[0]), "yd": str(d[1]), "zd": str(d[2]),
"nxa": str(n_a[0]), "nya": str(n_a[1]), "nza": str(n_a[2]),
"nxb": str(n_b[0]), "nyb": str(n_b[1]), "nzb": str(n_b[2]),
"nxd": str(n_d[0]), "nyd": str(n_d[1]), "nzd": str(n_d[2])}
fdict2 = {"xc": str(c[0]), "yc": str(c[1]), "zc": str(c[2]),
"xd": str(d[0]), "yd": str(d[1]), "zd": str(d[2]),
"xb": str(b[0]), "yb": str(b[1]), "zb": str(b[2]),
"nxc": str(n_c[0]), "nyc": str(n_c[1]), "nzc": str(n_c[2]),
"nxd": str(n_d[0]), "nyd": str(n_d[1]), "nzd": str(n_d[2]),
"nxb": str(n_b[0]), "nyb": str(n_b[1]), "nzb": str(n_b[2])}
ABD = 'graphics '+str(moln)+' trinorm "{xa} {ya} {za}" ' \
'"{xb} {yb} {zb}" ' \
'"{xd} {yd} {zd}" ' \
'"{nxa} {nya} {nza}" ' \
'"{nxb} {nyb} {nzb}" ' \
'"{nxd} {nyd} {nzd}"'.format(**fdict1)
CDB = 'graphics '+str(moln)+' trinorm "{xc} {yc} {zc}" ' \
'"{xd} {yd} {zd}" ' \
'"{xb} {yb} {zb}" ' \
'"{nxc} {nyc} {nzc}" ' \
'"{nxd} {nyd} {nzd}" ' \
'"{nxb} {nyb} {nzb}"'.format(**fdict2)
lines.append(ABD+"\n"+CDB)
return lines
@staticmethod
def __make_vector_lines(vecarray, moln, size=15):
if size == 1:
cylrad = 0.15
conerad = 0.45
else:
cylrad = size/100
conerad = size/20
lines = []
x1, y1, z1 = vecarray[:3]
x2, y2, z2 = vecarray[:3] + (0.8*size) * vecarray[3:]
x3, y3, z3 = vecarray[:3] + size * vecarray[3:]
cyl = 'graphics '+str(moln)+' cylinder "{} {} {}" "{} {} {}" ' \
'radius "{}" resolution "6" filled "yes"'.format(x1, y1, z1, x2, y2, z2, cylrad)
cap = 'graphics '+str(moln)+' cone "{} {} {}" "{} {} {}" ' \
'radius "{}" resolution "6"'.format(x2, y2, z2, x3, y3, z3, conerad)
lines.append(cyl + "\n" + cap)
return lines
def save2tcl(self):
hs = self.handles
moln = 0
# generate the surface
if self.surfcoords is not None and self.surfcolor is not None and self.surfmat is not None:
print("Preparing the Surface for visualisation...")
moln += 1
surf_lines = ['graphics {} materials on'.format(moln)]
surf_lines += Visualisation.surf2lines(self.surfcoords, self.surfmat, self.surfcolor, moln)
Visualisation.__save(self.path + "surface.tcl", surf_lines)
else:
print("Skipping Surface visualisation.")
# generate the planes
if self.planecoordlist is not None and self.planecolorlist is not None and self.planemat is not None:
print("Preparing the Planes for visualisation...")
for i_h in range(len(hs)):
moln += 1
plane_lines = ['graphics {} materials on'.format(moln)]
plane_lines += Visualisation.surf2lines(self.planecoordlist[i_h], self.planemat,
self.planecolorlist[i_h], moln)
Visualisation.__save(self.path + "planeHandle{}.tcl".format(hs[i_h].code), plane_lines)
else:
print("Skipping Plane visualisation.")
# generate the vectors
if self.vecarraylist is not None and self.veccolorlist is not None and self.veclenlist is not None:
print("Preparing the Vectors for visualisation...")
vecsperhandle = len(self.vecarraylist) / len(hs)
for i_h in range(len(hs)):
moln += 1
vec_lines = ['graphics {} materials on'.format(moln)]
begin = int(i_h * vecsperhandle)
end = int(begin + vecsperhandle - 1)
for i in range(begin, end + 1):
vec_lines += Visualisation.vector2lines(self.vecarraylist[i], self.veccolorlist[i],
self.vecmat, self.veclenlist[i], moln)
Visualisation.__save(self.path + "vectorsHandle{}.tcl".format(hs[i_h].code), vec_lines)
else:
print("Skipping Vector visualisation.")
def copytemplate(self):
# saves the .vmd script for automatic nice representations
tempf = open("VIS_TEMPLATE.vmd")
lines = tempf.readlines()
tempf.close()
outf = open(self.path + "runme.vmd", "w+")
outf.write(''.join(lines))
print("Saved {}.".format(self.path + "runme.vmd"))
outf.close()
return None
@staticmethod
def surf2lines(surfcoords, surfmat, surfcol, moln):
lines = ['graphics {} color {}'.format(moln, surfcol),
'graphics {} material {}'.format(moln, surfmat)]
x, y, z = (surfcoords[0], surfcoords[1], surfcoords[2])
lines.extend(Visualisation.__make_triangle_mesh_lines(x, y, z, moln))
return lines
@staticmethod
def vector2lines(vecsarray, veccol, vecmat, veclen, moln):
lines = ['graphics {} color {}'.format(moln, veccol),
'graphics {} material {}'.format(moln, vecmat)]
lines.extend(Visualisation.__make_vector_lines(vecsarray, moln, size=veclen))
return lines
@staticmethod
def __flattenlist(listoflists):
return [val for sublist in listoflists for val in sublist]
@staticmethod
def __save(path, lines):
try:
with open(path, 'w+') as outFile:
outFile.write('\n'.join(lines))
print("Saved {}".format(path))
except IOError as exception:
raise IOError("{}: {}".format(path, exception.strerror))
return None