You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/source/infras.rst
+15-3Lines changed: 15 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -10,6 +10,8 @@ Overview of Modules
10
10
11
11
**Core Modules:**
12
12
13
+
- :py:mod:`tensorcircuit.abstractcircuit` and :py:mod:`tensorcircuit.basecircuit`: Hierarchical abstraction of circuit class.
14
+
13
15
- :py:mod:`tensorcircuit.circuit`: The core object :py:obj:`tensorcircuit.circuit.Circuit`. It supports circuit construction, simulation, representation, and visualization without noise or with noise using the Monte Carlo trajectory approach.
14
16
15
17
- :py:mod:`tensorcircuit.cons`: Runtime ML backend, dtype and contractor setups. We provide three sets of set methods for global setup, function level setup using function decorators, and context setup using ``with`` context managers. We also include customized contractor infrastructures in this module.
@@ -24,9 +26,7 @@ Overview of Modules
24
26
25
27
- :py:mod:`tensorcircuit.channels`: Definition of quantum noise channels.
26
28
27
-
- :py:mod:`tensorcircuit.densitymatrix`: Referenced implementation of ``tc.DMCircuit`` class, with similar set API of ``tc.Circuit`` while simulating the noise in the full form of the density matrix.
28
-
29
-
- :py:mod:`tensorcircuit.densitymatrix2`: Highly efficient implementation of :py:obj:`tensorcircuit.densitymatrix2.DMCircuit2` class, always preferred than the referenced implementation.
29
+
- :py:mod:`tensorcircuit.densitymatrix`: Referenced and highly efficient implementation of ``tc.DMCircuit`` class, with similar set API of ``tc.Circuit`` while simulating the noise in the full form of the density matrix.
30
30
31
31
**ML Interfaces Related Modules:**
32
32
@@ -86,6 +86,18 @@ Inside TensorCircuit, we heavily utilize TensorNetwork-related APIs from the Ten
86
86
- We borrow the TensorNetwork's code in /matrixproductstates as ``tc.mps_base`` for bug fixing and jit/AD compatibility, so that we have better support for our MPS based quantum circuit simulator.
0 commit comments